ATF3在心肌缺血再灌注损伤中的负性调控作用

杨超君, 杨俊, 王辉波. ATF3在心肌缺血再灌注损伤中的负性调控作用[J]. 临床心血管病杂志, 2015, 31(8): 811-813. doi: 10.13201/j.issn.1001-1439.2015.08.004
引用本文: 杨超君, 杨俊, 王辉波. ATF3在心肌缺血再灌注损伤中的负性调控作用[J]. 临床心血管病杂志, 2015, 31(8): 811-813. doi: 10.13201/j.issn.1001-1439.2015.08.004
YANG Chaojun, YANG Jun, WANG Huibo. The negative regulatory factor in myocardial ischemia reperfusion injury of ATF3[J]. J Clin Cardiol, 2015, 31(8): 811-813. doi: 10.13201/j.issn.1001-1439.2015.08.004
Citation: YANG Chaojun, YANG Jun, WANG Huibo. The negative regulatory factor in myocardial ischemia reperfusion injury of ATF3[J]. J Clin Cardiol, 2015, 31(8): 811-813. doi: 10.13201/j.issn.1001-1439.2015.08.004

ATF3在心肌缺血再灌注损伤中的负性调控作用

  • 基金项目:

    国家自然科学基金(No:81170133,81200088,81470387);湖北省医学领军人才

详细信息
    通讯作者: 杨俊,E-mail:yangjun@medmail.com.cn
  • 中图分类号: R541.4

The negative regulatory factor in myocardial ischemia reperfusion injury of ATF3

More Information
  • 冠心病是危害人类健康的疾病,近几十年来其发病率和病死率呈上升趋势。再灌注治疗是挽救心肌梗死的有效手段,同时也可能对心脏产生更大的损伤,即心肌缺血再灌注损伤(myocardial ischemia reperfusion injury,MIRI)。大量研究表明,ATF/CERB家族成员ATF3在缺血再灌注损伤中发挥负性调控作用。本文将对ATF3的表达特点和其在MIRI中的负性调控作用进行综述。这将为ATF3过表达治疗MIRI这一基因治疗策略提供理论基础。
  • 加载中
  • [1]

    GO A S, MOZAFFARIAN D, ROGER V L, et al. Executive summary:heart disease and stroke statistics-2014 update:a report from the American Heart Association[J]. Circulation, 2014, 129:399-410.

    [2]

    GILCHRIST M, THORSSON V, LI B, et al. Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4[J]. Nature, 2006, 441:173-178.

    [3]

    HAI T W, LIU F, COUKOS W J, et al. Transcription factor ATF cDNA clones:an extensive family of leucine zipper proteins able to selectively form DNA-binding heterodimers[J]. Genes Dev, 1989, 3:2083-2090.

    [4]

    CHEN B P, LIANG G, WHELAN J, et al. ATF3 and ATF3 delta Zip. Transcriptional repression versus activation by alternatively spliced isoforms[J]. J Biol Chem, 1994, 269:15819-15826.

    [5]

    HAI T, CURRAN T. Cross-family dimerization of transcription factors Fos/Jun and ATF/CREB alters DNA binding specificity[J]. Proc Natl Acad Sci U S A, 1991, 88:3720-3724.

    [6]

    HAI T, WOLFORD C C, CHANG Y S. ATF3, a hub of the cellular adaptive-response network, in the pathogenesis of diseases:is modulation of inflammation a unifying component?[J]. Gene Expr, 2010, 15:1-11.

    [7]

    YAMAMOTO S, YAMANE M, YOSHIDA O, et al. Activations of mitogen-activated protein kinases and regulation of their downstream molecules after rat lung transplantation from donors after cardiac death[J]. Transplant Proc, 2011, 43:3628-3633.

    [8]

    WANG L, DENG S, LU Y, et al. Increased inflammation and brain injury after transient focal cerebral ischemia in activating transcription factor 3 knockout mice[J]. Neuroscience, 2012, 220:100-108.

    [9]

    SONG D Y, OH K M, YU H N, et al. Role of activating transcription factor 3 in ischemic penumbra region following transient middle cerebral artery occlusion and reperfusion injury[J]. Neurosci Res, 2011, 70:428-434.

    [10]

    ZHANG T, ZHAO L L, CAO X, et al. Bioinformatics analysis of time series gene expression in left ventricle (LV) with acute myocardial infarction (AMI)[J]. Gene, 2014, 543:259-267.

    [11]

    KRIVORUCHKO A, STOREY K B. Activation of the unfolded protein response during anoxia exposure in the turtle Trachemys scripta elegans[J]. Mol Cell Biochem, 2013, 374:91-103.

    [12]

    DA SILVA R, LUCCHINETTI E, PASCH T, et al. Ischemic but not pharmacological preconditioning elicits a gene expression profile similar to unprotected myocardium[J]. Physiol Genomics, 2004, 20:117-130.

    [13]

    DELAROSA O, DALEMANS W, LOMBARDO E. Toll-like receptors as modulators of mesenchymal stem cells[J]. Front Immunol, 2012, 3:182.

    [14]

    GLUSHKOVA O V, KHRENOV M O, NOVOSELOVA T V, et al. The role of the NF-κB, SAPK/JNK, and TLR4 signalling pathways in the responses of RAW 264.7 cells to extremely low-intensity microwaves[J]. Int J Radiat Biol, 2015, 91:321-328.

    [15]

    WHITMORE M M, IPARRAGUIRRE A, KUBELKA L, et al. Negative Regulation of TLR-Signaling Pathways by Activating Transcription Factor-3[J]. J Immunol, 2007, 179:3622-3630.

    [16]

    NGUYEN C T, KIM E H, LUONG T T, et al. TLR4 Mediates Pneumolysin-Induced ATF3 Expression through the JNK/p38 Pathway in-Infected RAW 264.7 Cells[J]. Mol Cells, 2015, 38:58-64.

    [17]

    SUGANAMI T, YUAN X, SHIMODA Y, et al. Activating Transcription Factor 3 Constitutes a Negative Feedback Mechanism That Attenuates Saturated Fatty Acid/Toll-Like Receptor 4 Signaling and Macrophage Activation in Obese Adipose Tissue[J]. Circ Res, 2009, 105:25-32.

    [18]

    LI H F, CHENG C F, LIAO W J, et al. ATF3-mediated epigenetic regulation protects against acute kidney injury[J]. J Am Soc Nephrol, 2010, 21:1003-1013.

    [19]

    RAO J, QIAN X, LI G, et al. ATF3-Mediated NRF2/HO-1 Signaling Regulates TLR4 Innate Immune Responses in Mouse Liver Ischemia/Reperfusion Injury[J]. Am J Transplant, 2015, 15:76-87.

    [20]

    BROOKS A C, GUO Y, SINGH M, et al. Endoplasmic reticulum stress-dependent activation of ATF3 mediates the late phase of ischemic preconditioning[J]. J Mol Cell Cardiol, 2014, 76:138-147.

    [21]

    KIM H B, KONG M, KIM T M, et al. NFATc4 and ATF3 negatively regulate adiponectin gene expression in 3T3-L1 adipocytes[J]. Diabetes, 2006, 55:1342-1352.

    [22]

    KOUZARIDES T. Acetylation:a regulatory modification to rival phosphorylation?[J]. Embo J, 2000, 19:1176-1179.

    [23]

    ZHAO T C, CHENG G, ZHANG L X, et al. Inhibition of histone deacetylases triggers pharmacologic preconditioning effects against myocardial ischemic injury[J]. Cardiovasc Res, 2007, 76:473-481.

    [24]

    GRANGER A, ABDULLAH I, HUEBNER F, et al. Histone deacetylase inhibition reduces myocardial ischemia-reperfusion injury in mice[J]. FASEB J, 2008, 22:3549-3560.

  • 加载中
计量
  • 文章访问数:  23
  • PDF下载数:  18
  • 施引文献:  0
出版历程
收稿日期:  2014-12-18
修回日期:  2015-01-13

目录