过表达IDO骨髓间充质干细胞通过外排体促进移植心脏存活的分子机制研究

贺继刚, 韩金秀, 李贝贝, 等. 过表达IDO骨髓间充质干细胞通过外排体促进移植心脏存活的分子机制研究[J]. 临床心血管病杂志, 2018, 34(3): 301-306. doi: 10.13201/j.issn.1001-1439.2018.03.021
引用本文: 贺继刚, 韩金秀, 李贝贝, 等. 过表达IDO骨髓间充质干细胞通过外排体促进移植心脏存活的分子机制研究[J]. 临床心血管病杂志, 2018, 34(3): 301-306. doi: 10.13201/j.issn.1001-1439.2018.03.021
HE Jigang, HAN Jinxiu, LI Beibei, et al. Molecular mechanism of the overexpression of IDO bone marrow mesenchymal stem cells for the survival of transplanted heart[J]. J Clin Cardiol, 2018, 34(3): 301-306. doi: 10.13201/j.issn.1001-1439.2018.03.021
Citation: HE Jigang, HAN Jinxiu, LI Beibei, et al. Molecular mechanism of the overexpression of IDO bone marrow mesenchymal stem cells for the survival of transplanted heart[J]. J Clin Cardiol, 2018, 34(3): 301-306. doi: 10.13201/j.issn.1001-1439.2018.03.021

过表达IDO骨髓间充质干细胞通过外排体促进移植心脏存活的分子机制研究

  • 基金项目:

    国家自然科学基金(No:81460073,31460298);云南省科技厅-昆明医科大学应用基础研究联合专项(No:2014FB089);云南省教育厅科学研究基金(No:2015Z051);中国博士后科学基金(No:2015M582764XB);成都医学院2015年度科研项目(No:CYZ15-18);云南省医学后备人才(No:H-201607)

详细信息
    通讯作者: 李洪荣,E-mail:jiganghe@sina.com
  • 中图分类号: R654.2

Molecular mechanism of the overexpression of IDO bone marrow mesenchymal stem cells for the survival of transplanted heart

More Information
  • 目的:探讨过表达IDO大鼠骨髓间充质干细胞(BMSCs)通过分泌外排体促进移植心脏存活的分子基础。方法:通过慢病毒载体GV308携带IDO转染构建过表达IDO大鼠BMSCs,并加入基因开启剂强力霉素(DOX),按照分泌外排体的类型分为3组:过表达IDO-BMSCs-exosome组(过表达IDO组)、空载体-BMSCs-exosome组(空载体组)、BMSCs-exosome组(BMSCs组);然后采用SBI公司的ExoQuick-TC提取3组分泌的外排体,同时建立大鼠腹腔异位移植心脏模型;经尾静脉给予相应细胞分泌的外排体,利用彩色超声心动图检测注射3组外排体后2 d移植心脏的心功能变化。另将注射吗替麦考(吗替麦考组)及建模未处理(未处理组)的大鼠作为对照。进而采用小RNA测序技术检测过表达IDO组大鼠BMSCs外排体中与免疫相关的microRAN表达。结果:心脏彩色超声结果显示:过表达IDO-BMSCs分泌的外排体可以有效改善异位移植心脏存活。而根据KEGG分析可见前20位上调microRNA中涉及免疫的有10个,其中miR-540-3p的差异倍数(FC)值上升幅度最大。前20位下调microRNA中涉及免疫的有3个,其中miR-338-5p的FC值下降幅度最大。结论:通过采用小RNA (sRNA)测序技术检测过表达IDO组大鼠BMSC分泌外排体内与免疫相关的microRNA,最终确认上调重点microRNA为miR-540-3p,下调重点microRNA为miR-338-5p。
  • 加载中
  • [1]

    Zaher SS, Germain C, Fu H, et al.3-hydroxykynurenine suppresses CD4+ T-cell proliferation, induces T-regulatory-cell development, and prolongs corneal allograft survival[J].Invest J Vis Sci, 2011, 52(5):2640-2648.

    [2]

    Spielmann N, Wong DT. Saliva:diagnostics and therapeutic perspectives[J].Oral Dis, 2011, 17(4):345-354.

    [3]

    Lei D, Zhang F, Yao D, et al. MiR-338-5p suppresses proliferation, migration, invasion, and promote apoptosis of glioblastoma cells by directly targeting EFEMP1[J]. Biomed Pharmacother, 2017, 89:957-965.

    [4]

    Chen X, Pan M, Han L, et al.miR-338-3p suppresses neuroblastoma proliferation, invasion and migration through targeting PREX2a[J].FEBS Lett, 2013, 587(22):3729-3737.

    [5]

    Na H, Wu Z, Li L, et al. MiR-338-3p inhibits epithelial-mesenchymal transition in gastric cancer cells by targeting ZEB2 and MACC1/Met/Akt signaling[J]. Oncotarget, 2015, 6(17):15222-15234.

    [6]

    Sun J, Feng X, Gao S, et al. microRNA-338-3p functions as a tumor suppressor in human non-small-cell lung carcinoma and targets Ras-related protein 14[J]. Mol Med Rep, 2015, 11(2):1400-1406.

    [7]

    Xing Z, Lan Y, Xian L, et al. Anticancer bioactive peptide-3 inhibits human gastric cancer growth by targeting miR-338-5p[J]. Cell Biosci, 2016, 6(1):53.

    [8]

    Leonard WJ, O'Shea JJ. Jaks and STATs:biological implications[J]. Annu Rev Immunol, 1998, 16(16):293-322.

    [9]

    Mishra J, Karanki SS, Kumar N. Identification of molecular switch regulating interactions of Janus kinase 3 with cytoskeletal proteins[J]. J Biol Chem, 2012, 287(49):41386-41391.

    [10]

    Mishra J, Waters CM, Kumar N. Molecular mechanism of interleukin-2-induced mucosal homeostasis[J]. Am J Physiol Cell Physiol, 2012, 302(5):735-747.

    [11]

    Kumar N, Mishra J, Narang VS, et al. Janus kinase 3 regulates interleukin 2-induced mucosal wound repair through tyrosine phosphorylation of villin[J]. J Biol Chem, 2007, 282(42):30341-30345.

    [12]

    Johnston JA, Kawamura M, Kirken RA, et al. Phosphorylation and activation of the Jak-3 Janus kinase in response to interleukin-2[J]. Nature, 1994, 370(6485):151-153.

    [13]

    Fujimoto M, Naka T, Nakagawa R, et al. Defective thymocyte development and perturbed homeostasis of T cells in STAT-induced STAT inhibitor-1/suppressors of cytokine signaling-1 transgenic mice[J]. J Immunol, 2000, 165(4):1799-1806.

    [14]

    Degryse S, de Bock CE, Cox L, et al. JAK3 mutants transform hematopoietic cells through JAK1 activation, causing T-cell acute lymphoblastic leukemia in a mouse model[J]. Blood, 2014, 124(20):3092-3100.

    [15]

    Henkels KM, Frondorf K, Gonzalezmejia ME, et al. IL-8-induced neutrophil chemotaxis is mediated by janus kinase 3(jak3)[J]. FEBS Lett, 2011, 585(1):159-166.

  • 加载中
计量
  • 文章访问数:  22
  • PDF下载数:  13
  • 施引文献:  0
出版历程
收稿日期:  2017-07-19

目录