miR-199-3p通过靶向调控SP1促进成纤维细胞增殖对心房颤动心房重构的影响

魏飞宇, 范洁, 高田, 等. miR-199-3p通过靶向调控SP1促进成纤维细胞增殖对心房颤动心房重构的影响[J]. 临床心血管病杂志, 2020, 36(6): 523-530. doi: 10.13201/j.issn.1001-1439.2020.06.007
引用本文: 魏飞宇, 范洁, 高田, 等. miR-199-3p通过靶向调控SP1促进成纤维细胞增殖对心房颤动心房重构的影响[J]. 临床心血管病杂志, 2020, 36(6): 523-530. doi: 10.13201/j.issn.1001-1439.2020.06.007
WEI Feiyu, FAN Jie, GAO Tian, et al. The effect of miR-199-3p on fibroblasts proliferation to promote atrial structural remodeling by targeting SP1 in atrial fibrillation[J]. J Clin Cardiol, 2020, 36(6): 523-530. doi: 10.13201/j.issn.1001-1439.2020.06.007
Citation: WEI Feiyu, FAN Jie, GAO Tian, et al. The effect of miR-199-3p on fibroblasts proliferation to promote atrial structural remodeling by targeting SP1 in atrial fibrillation[J]. J Clin Cardiol, 2020, 36(6): 523-530. doi: 10.13201/j.issn.1001-1439.2020.06.007

miR-199-3p通过靶向调控SP1促进成纤维细胞增殖对心房颤动心房重构的影响

  • 基金项目:

    云南省科技厅-昆明医科大学应用基础研究联合专项面上项目(No:2019FE001(-291))

详细信息
    通讯作者: 王礼琳,E-mail:kmwanglin@163.com
  • 中图分类号: R541.75

The effect of miR-199-3p on fibroblasts proliferation to promote atrial structural remodeling by targeting SP1 in atrial fibrillation

More Information
  • 目的:探讨miR-199-3p与心房纤维化的关系及其对心房成纤维细胞增殖的影响。方法:连续入选2018年11月-2019年11月在云南省第一人民医院心内科住院的心房颤动(AF)患者100例,以基线资料相匹配的非AF患者50例作为对照,利用qRT-PCR检测2组患者外周血中miR-199-3p的表达差异;利用受试者工作特征曲线(ROC)分析miR-199-3p对AF的诊断价值;采用Pearson相关分析miR-199-3p和左房纤维化的相关性;利用CCK-8测定miR-199-3p对成纤维细胞增殖的影响,qRT-PCR检测细胞周期调控因子Ki67和Cyclin D1及CollagenⅠ和CollagenⅢ表达变化;最后利用双荧光素酶报告基因实验确定miR-199-3p的靶基因。结果:miR-199-3p在AF患者外周血[(0.38±0.31):(1.25±0.89),P<0.01]和心房组织中[(0.48±0.03):(1.00±0.12),P<0.01)]表达都下调,且在持续性AF患者中表达低于阵发性AF[(0.42±0.20:(1.08±0.48),P<0.01];ROC曲线分析miR-199-3p表达下降鉴别AF的曲线下面积(AUC)为0.90,其敏感性为81%,特异性为86%,鉴别持续性AF的AUC为0.91,其敏感性为98%,特异性为73%;Pearson相关分析显示miR-199-3p表达水平和左房纤维化程度呈负相关(r=-0.863,P<0.01);与对照组相比,沉默miR-199-3p表达可促进成纤维细胞增殖和纤维化,但过表达miR-199-3p可抑制细胞增殖和纤维化(P<0.05);荧光素酶报告基因实验和Western blot证实SP1是miR-199-3p的直接靶基因。结论:AF患者中miR-199-3p和左房纤维化呈负相关,且miR-199-3p通过靶向SP1的表达负性调控成纤维细胞增殖和纤维化,进而参与AF心房重构。因此,miR-199-3p有望成为临床AF潜在的非侵入性诊断标志物和纤维化的预测标志物。
  • 加载中
  • [1]

    Odutayo A, Wong CX, Hsiao AJ, et al.Atrial fibrillation and risks of cardiovascular disease, renal disease, and death:systematic review and meta-analysis[J].BMJ, 2016, 354:i4482.

    [2]

    Cheng WH, Lo LW, Lin YJ, et al.Ten-year ablation outcomes of patients with paroxysmal atrial fibrillation undergoing pulmonary vein isolation[J].Heart Rhythm, 2019, 16(9):1327-1333.

    [3]

    Tilz RR, Rillig A, Thum AM, et al.Catheter ablation of long-standing persistent atrial fibrillation:5-year outcomes of the Hamburg Sequential Ablation Strategy[J].J Am Coll Cardiol, 2012, 60(19):1921-1929.

    [4]

    Dan GA, Dobrev D.Antiarrhythmic drugs for atrial fibrillation:Imminent impulses are emerging[J].Int J Cardiol Heart Vasc, 2018, 21:11-15.

    [5]

    Nattel S, Burstein B, Dobrev D.Atrial remodeling and atrial fibrillation:mechanisms and implications[J].Circ Arrhythm Electrophysiol, 2008, 1(1):62-73.

    [6]

    Heijman J, Voigt N, Nattel S, et al.Cellular and molecular electrophysiology of atrial fibrillation initiation, maintenance, and progression[J].Circ Res, 2014, 114(9):1483-1499.

    [7]

    Kainuma S, Masai T, Yoshitatsu M, et al.Advanced left-atrial fibrosis is associated with unsuccessful maze operation for valvular atrial fibrillation[J].Eur J Cardiothorac Surg, 2011, 40(1):61-69.

    [8]

    Dangwal S, Schimmel K, Foinquinos A, et al.Noncoding RNAs in Heart Failure[J].Handb Exp Pharmacol, 2017, 243:423-445.

    [9]

    Chen YT, Wang J, Tong KS, et al.The association of heart failure-related microRNAs with neurohormonal signaling[J].Biochim Biophys Acta Mol Basis Dis, 2017, 1863(8):2031-2040.

    [10]

    Shan H, Zhang Y, Lu Y, et al.Downregulation of miR-133 and miR-590 contributes to nicotine-induced atrial remodelling in canines[J].Cardiovasc Res, 2009, 83(3):465-472.

    [11]

    Luo X, Pan Z, Shan H, et al.MicroRNA-26 governs profibrillatory inward-rectifier potassium current changes in atrial fibrillation[J].J Clin Invest, 2013, 123(5):1939-1951.

    [12]

    Liu T, Zhong S, Rao F, et al.Catheter ablation restores decreased plasma miR-409-3p and miR-432 in atrial fibrillation patients[J].Europace, 2016, 18(1):92-99.

    [13]

    魏飞宇, 吕丽, 张进, 等, Popdc2在心脏肥大中的表达及其对病理性心肌肥大的影响[J].临床心血管病杂志, 2018, 34(3):311-316.

    [14]

    Zhang J, Wei F, Ding L, et al.MicroRNA-1976 regulates degeneration of the sinoatrial node by targeting Cav1.2 and Cav1.3 ion channels[J].J Mol Cell Cardiol, 2019, 134:74-85.

    [15]

    January CT, Wann LS, Calkins H, et al.2019 AHA/ACC/HRS Focused Update of the 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation:A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society in Collaboration With the Society of Thoracic Surgeons[J].Circulation, 2019, 140(2):e125-e151.

    [16]

    O'Neal WT, Salahuddin T, Broughton ST, et al.Atrial Fibrillation and Cardiovascular Outcomes in the Elderly[J].Pacing Clin Electrophysiol, 2016, 39(9):907-913.

    [17]

    E S, Costa MC, Kurc S, et al.The circulating non-coding RNA landscape for biomarker research:lessons and prospects from cardiovascular diseases[J].Acta Pharmacol Sin, 2018, 39(7):1085-1099.

    [18]

    Komal S, Yin JJ, Wang SH, et al.MicroRNAs:Emerging biomarkers for atrial fibrillation[J].J Cardiol, 2019, 74(6):475-482.

    [19]

    Platonov PG, Mitrofanova LB, Orshanskaya V et al.Structural abnormalities in atrial walls are associated with presence and persistency of atrial fibrillation but not with age[J].J Am Coll Cardiol, 2011, 58(21):2225-2232.

    [20]

    Nattel S.How does fibrosis promote atrial fibrillation persistence:in silicofindings, clinical observations, and experimental data[J].Cardiovasc Res, 2016, 110(3):295-297.

    [21]

    Li G, Liu E, Liu T, et al.Atrial electrical remodeling in a canine model of sinus node dysfunction[J].Int J Cardiol, 2011, 146(1):32-36.

    [22]

    Nattel S.Molecular and cellular mechanisms of atrial fibrosis in atrial fibrillation[J].JACC Clin Electrophysiol, 2017, 3(5):425-435.

    [23]

    Calvo D, Filgueiras-Rama D, Jalife J.Mechanisms and Drug Development in Atrial Fibrillation[J].Pharmacol Rev, 2018, 70(3):505-525.

    [24]

    Zhao Z, Niu X, Dong Z, et al.Upstream therapeutic strategies of valsartan and fluvastatin on hypertensive patients with non-permanent atrial fibrillation[J].Cardiovasc Ther, 2018, 36(6):e12478.

    [25]

    Calò L, Martino A, Sciarra L, et al.Upstream effect for atrial fibrillation:still a dilemma?[J].Pacing Clin Electrophysiol, 2011, 34(1):111-28.

    [26]

    Hu X, Li T, Zhang C, et al.GATA4 regulates ANF expression synergistically with Sp1 in a cardiac hypertrophy model[J].J Cell Mol Med, 2011, 15(9):1865-1877.

    [27]

    Li R, Xiao J, Qing X, et al.Sp1 Mediates a therapeutic role of MiR-7a/b in angiotensin II-induced cardiac fibrosis via mechanism involving the TGF-beta and MAPKs pathways in cardiac fibroblasts[J].PLoS One, 2015, 10(4):e0125513.

    [28]

    Cao F, Li Z, Ding WM, et al.LncRNA PVT1 regulates atrial fibrosis via miR-128-3p-SP1-TGF-beta1-Smad axis in atrial fibrillation[J].Mol Med, 2019, 25(1):7.

  • 加载中
计量
  • 文章访问数:  38
  • PDF下载数:  24
  • 施引文献:  0
出版历程
收稿日期:  2020-03-18

目录