基于肥胖与肌量划分的人体成分类型与动脉硬化的关系研究

王耀羚, 戚本玲, 白丽娟, 等. 基于肥胖与肌量划分的人体成分类型与动脉硬化的关系研究[J]. 临床心血管病杂志, 2020, 36(10): 906-913. doi: 10.13201/j.issn.1001-1439.2020.10.007
引用本文: 王耀羚, 戚本玲, 白丽娟, 等. 基于肥胖与肌量划分的人体成分类型与动脉硬化的关系研究[J]. 临床心血管病杂志, 2020, 36(10): 906-913. doi: 10.13201/j.issn.1001-1439.2020.10.007
WANG Yaoling, QI Benling, BAI Lijuan, et al. The correlation of body composition types based on obesity and muscle mass and atherosclerosis[J]. J Clin Cardiol, 2020, 36(10): 906-913. doi: 10.13201/j.issn.1001-1439.2020.10.007
Citation: WANG Yaoling, QI Benling, BAI Lijuan, et al. The correlation of body composition types based on obesity and muscle mass and atherosclerosis[J]. J Clin Cardiol, 2020, 36(10): 906-913. doi: 10.13201/j.issn.1001-1439.2020.10.007

基于肥胖与肌量划分的人体成分类型与动脉硬化的关系研究

  • 基金项目:

    国家自然科学基金面上项目(No:81571373)

    国家自然科学基金青年项目(No:81601217)

    湖北省自然科学基金(No:2017CFB627)

    武汉协和医院科学研究基金(No:2019)

详细信息
    通讯作者: 戚本玲,E-mail:qibenlingok_2015@163.com
  • 中图分类号: R592;R543.5

The correlation of body composition types based on obesity and muscle mass and atherosclerosis

More Information
  • 目的:评价脂肪及肌量指标对于动脉硬化风险的预测及诊断效力。方法:收集2018年11月—2019年11月同时完成动脉弹性检测及人体成分分析的住院患者共1150例的临床资料。使用心-踝血管指数(CAVI)评价动脉弹性,并根据CAVI将患者分为动脉硬化组与非动脉硬化组。使用生物电阻抗(BIA)人体成分测量仪分析人体成分。根据人群年龄四分位数将患者归类为青年、中年、老年前期和老年;根据体脂率分类:肥胖与非肥胖;根据四肢骨骼肌指数(ASMI)分类:肌量减少与非肌量减少;根据肥胖联合肌量分类:非肥胖且非肌量减少、单纯肥胖、单纯肌量减少及肥胖合并肌量减少。比较各类型的人体成分指标及CAVI差异。使用Logistic回归评价各人体成分类型形成动脉硬化的风险。使用ROC曲线评价各人体成分指标或类型对动脉硬化的诊断效力。结果:单纯肥胖、单纯肌量减少和肥胖合并肌量减少对动脉硬化的OR分别为1.74(95%CI:1.31~2.33)、2.21(95%CI:1.34~3.58)和29.30(95%CI:5.15~550.23)。调整年龄后,仅肥胖合并肌量减少表现出对动脉硬化显著的高风险,OR为11.87(95%CI:1.80~235.22)。在人体成分指标中,体重和BMI在动脉硬化组显著低于非动脉硬化组,呈现“肥胖悖论”。内脏脂肪/脂肪具有诊断动脉硬化的良好效力,其ROC曲线下面积(AUC)为0.65(95%CI:0.61~0.69),显著高于BMI(AUC=0.59)、ASMI(AUC=0.59)和内脏脂肪(AUC=0.54)。联合年龄、ASMI和内脏脂肪/脂肪诊断动脉硬化的AUC为0.84(95%CI:0.82~0.87)。结论:肥胖并肌量减少是独立于年龄的动脉硬化高危风险类型,结合年龄、ASMI和内脏脂肪/脂肪是预测动脉硬化的优选方案。
  • 加载中
  • [1]

    Sattar N,Welsh P.The obesity paradox in secondary prevention:a weighty intervention or a wait for more evidence?[published online ahead of print,2020 May 27].Eur Heart J.2020;ehaa398.doi:10.1093/eurheartj/ehaa398

    [2]

    Rong YD,Bian AL,Hu HY,et al.A cross-sectional study of the relationships between different components of sarcopenia and brachial ankle pulse wave velocity in community-dwelling elderly[J].BMC Geriatr,2020,20(1):115.

    [3]

    Ponti F,Santoro A,Mercatelli D,et al.Aging and imaging assessment of body composition:from fat to facts[J].Front Endocrinol(Lausanne),2019,10:861.

    [4]

    Chen LK,Woo J,Assantachai P,et al.Asian Working Group for Sarcopenia:2019 Consensus Update on Sarcopenia Diagnosis and Treatment[J].J Am Med Dir Assoc,2020,21(3):300-307.e2.

    [5]

    El Bizri I,Batsis JA.Linking epidemiology and molecular mechanisms in sarcopenic obesity in populations[J].Proc Nutr Soc,2020:1-9.

    [6]

    Srikanthan P,Hevener AL,Karlamangla AS.Sarcopenia exacerbates obesity-associated insulin resistance and dysglycemia:findings from the National Health and Nutrition Examination Survey III[J].PLoS One,2010,5(5):e10805.

    [7]

    Li CW,Yu K,Shyh-Chang N,et al.Circulating factors associated with sarcopenia during ageing and after intensive lifestyle intervention[J].J Cachexia Sarcopenia Muscle,2019,10(3):586-600.

    [8]

    Payne GA,Borbouse L,Kumar S,et al.Epicardial perivascular adipose-derived leptin exacerbates coronary endothelial dysfunction in metabolic syndrome via a protein kinase C-beta pathway[J].Arterioscler Thromb Vasc Biol,2010,30(9):1711-1717.

    [9]

    Park SY,Kim KH,Seo KW,et al.Resistin derived from diabetic perivascular adipose tissue up-regulates vascular expression of osteopontin via the AP-1 signalling pathway[J].J Pathol,2014,232(1):87-97.

    [10]

    Wang P,Xu TY,Guan YF,et al.Perivascular adipose tissue-derived visfatin is a vascular smooth muscle cell growth factor:role of nicotinamide mononucleotide[J].Cardiovasc Res,2009,81(2):370-380.

    [11]

    Achari AE,Jain SK.Adiponectin,a Therapeutic Target for Obesity,Diabetes,and Endothelial Dysfunction[J].Int J Mol Sci,2017,18(6).

    [12]

    Uemura Y,Shibata R,Ohashi K,et al.Adipose-derived factor CTRP9 attenuates vascular smooth muscle cell proliferation and neointimal formation[J].FASEB J,2013,27(1):25-33.

    [13]

    Lin XL,He XL,Zeng JF,et al.FGF21 increases cholesterol efflux by upregulating ABCA1 through the ERK1/2-PPARγ-LXRα pathway in THP1 macrophage-derived foam cells[J].DNA Cell Biol,2014,33(8):514-521.

    [14]

    Kim JH,Cho JJ,Park YS.Relationship between sarcopenic obesity and cardiovascular disease risk as estimated by the Framingham risk score[J].J Korean Med Sci,2015,30(3):264-271.

    [15]

    Kim TN,Park MS,Lim KI,et al.Skeletal muscle mass to visceral fat area ratio is associated with metabolic syndrome and arterial stiffness:The Korean Sarcopenic Obesity Study(KSOS)[J].Diabetes Res Clin Pract,2011,93(2):285-291.

    [16]

    Shirai K,Song M,Suzuki J,et al.Contradictory effects of β1-and α1-aderenergic receptor blockers on cardio-ankle vascular stiffness index(CAVI)--CAVI independent of blood pressure[J].J Atheroscler Thromb,2011,18(1):49-55.

    [17]

    Lee MM,Jebb SA,Oke J,et al.Reference values for skeletal muscle mass and fat mass measured by bioelectrical impedance in 390 565 UK adults[J].J Cachexia Sarcopenia Muscle,2020,11(2):487-496.

  • 加载中
计量
  • 文章访问数:  249
  • PDF下载数:  143
  • 施引文献:  0
出版历程
收稿日期:  2020-06-09
修回日期:  2020-07-06

目录