-
摘要: 冠状动脉慢性完全闭塞病变(CTO)已成为冠心病介入治疗中的热点之一。寻找敏感并特异的外周血生物标志物,用于高危CTO人群的早期筛查,将有助于该疾病的预测和治疗。近年来研究表明,长链非编码RNA被认为是心血管危险因素和细胞功能的重要调节因子,因此其可能是CTO诊断和预后评估的重要指标之一。本文旨在对长链非编码RNA与CTO发生发展的关系,以及长链非编码RNA在CTO中潜在的应用价值进行综述。Abstract: Chronic total occlusion(CTO) has become one of the hotspots in interventional treatment of coronary artery disease. We look for sensitive and specific peripheral blood biomarkers for the early screening of high-risk CTO population, which will help the prediction and treatment of the disease. Recent studies have shown that long non-coding RNA(lncRNA) is considered to be an important regulator of cardiovascular risk factors and cell function, so it may be one of the important indicators for the diagnosis and prognostic assessment of CTO. This article reviews the relationship between lncRNA and the development of CTO, as well as the potential application value of lncRNA in CTO.
-
Key words:
- chronic total occlusion /
- long non-coding RNA /
- coronary artery disease
-
[1] Koelbl CO,Nedeljkovic ZS,Jacobs AK.Coronary chronic total occlusion(CTO):a review[J].Rev Cardiovasc Med,2018,19(1):33-39.
[2] 李小波,高晓飞,邵明学,等.血管内超声与冠状动脉造影引导药物洗脱支架植入治疗慢性完全闭塞性病变:5年随访结果[J].临床心血管病杂志,2020,36(7):604-607.
[3] Poller W,Dimmeler S,Heymans S,et al.Non-coding RNAs in cardiovascular diseases:diagnostic and therapeutic perspectives[J].Eur Heart J,2018,39(29):2704-2716.
[4] Kreutzer FP,Fiedler J,Thum T.Non-coding RNAs:key players in cardiac disease[J].J Physiol,2020,598(14):2995-3003.
[5] Sallam T,Sandhu J,Tontonoz P.Long noncoding RNA discovery in cardiovascular disease:decoding form to function[J].Circ Res,2018,122(1):155-166.
[6] Cao Q,Guo Z,Yan Y,et al.Exosomal long noncoding RNAs in aging and age-related diseases[J].IUBMB Life,2019,71(12):1846-1856.
[7] 丁向阳,余再新.长链非编码RNA参与心肌缺血再灌注损伤的研究进展[J].临床心血管病杂志,2019,35(6):573-578.
[8] 廖江铨,刘咏梅,王阶.lncRNA与miRNA相互调控作用及与心血管疾病的关系[J].临床心血管病杂志,2015,31(3):234-237.
[9] Tan J,Liu S,Jiang Q,et al.LncRNA-MIAT increased in patients with coronary atherosclerotic heart disease[J].Cardiol Res Pract,2019,2019:6280194.
[10] Gong YP,Zhang YW,Su XQ,et al.Inhibition of long noncoding RNA MALAT1 suppresses high glucose-induced apoptosis and inflammation in human umbilical vein endothelial cells by suppressing the NF-κB signaling pathway[J].Biochem Cell Biol,2020,98(6):669-675.
[11] Zhang C,Yang H,Li Y,et al.LNCRNA OIP5-AS1 regulates oxidative low-density lipoprotein-mediated endothelial cell injury via miR-320a/LOX1 axis[J].Mol Cell Biochem,2020,467(1-2):15-25.
[12] Bian W,Jing X,Yang Z,et al.Downregulation of LncRNA NORAD promotes Ox-LDL-induced vascular endothelial cell injury and atherosclerosis[J].Aging(Albany NY),2020,12(7):6385-6400.
[13] Liu X,Li S,Yang Y,et al.The lncRNA ANRIL regulates endothelial dysfunction by targeting the let-7b/TGF-βR1 signalling pathway[J].J Cell Physiol,2021,236(3):2058-2069.
[14] Wang YQ,Xu ZM,Wang XL,et al.LncRNA FOXC2-AS1 regulated proliferation and apoptosis of vascular smooth muscle cell through targeting miR-1253/FOXF1 axis in atherosclerosis[J].Eur Rev Med Pharmacol Sci,2020,24(6):3302-3314.
[15] Qi H,Shen J,Zhou W,et al.Up-regulation of long non-coding RNA THRIL in coronary heart disease:Prediction for disease risk,correlation with inflammation,coronary artery stenosis,and major adverse cardiovascular events[J].J Clin Lab Anal,2020,34(5):e23196.
[16] Li X,Yao N,Zhang J,et al.MicroRNA-125b is involved in atherosclerosis obliterans in vitro by targeting podocalyxin[J].Mol Med Rep,2015,12(1):561-568.
[17] Guo L,Lv H,Zhong L,et al.Comparison of long-term outcomes of medical therapy and successful recanalisation for coronary chronic total occlusions in elderly patients:a report of 1,294 patients[J].Cardiovasc Diagn Ther,2019,9(6):586-595.
[18] Zhang X,Chen J,Meng Q,et al.The protective effects of long non-coding RNA-ANCR on arterial calcification[J].J Bone Miner Metab,2020,38(4):421-431.
[19] Liu F,Yang XC,Chen ML,et al.LncRNA H19 Runx2 axis promotes VSMCs transition via MAPK pathway[J].Am J Transl Res,2020,12(4):1338-1347.
[20] Huang C,Zhan JF,Chen YX,et al.LncRNA-SNHG29 inhibits vascular smooth muscle cell calcification by downregulating miR-200b-3p to activate the α-Klotho/FGFR1/FGF23 axis[J].Cytokine,2020,136:155243.
[21] Chang Z,Yan G,Zheng J,et al.The lncRNA GAS5 inhibits the osteogenic differentiation and calcification of human vascular smooth muscle cells[J].Calcif Tissue Int,2020,107(1):86-95.
[22] Shen JJ,Zhang CH,Chen ZW,et al.LncRNA HOTAIR inhibited osteogenic differentiation of BMSCs by regulating Wnt/β-catenin pathway[J].Eur Rev Med Pharmacol Sci,2019,23(17):7232-7246.
[23] Hara H,Takeda N,Komuro I.Pathophysiology and therapeutic potential of cardiac fibrosis[J].Inflamm Regen,2017,37:13.
[24] She Q,Shi P,Xu SS,et al.DNMT1 methylation of LncRNA GAS5 Leads to cardiac fibroblast pyroptosis via affecting NLRP3 axis[J].Inflammation,2020,43(3):1065-1076.
[25] Zhang BF,Jiang H,Chen J,et al.LncRNA H19 ameliorates myocardial infarction-induced myocardial injury and maladaptive cardiac remodelling by regulating KDM3A[J].J Cell Mol Med,2020,24(1):1099-1115.
[26] Wang J,Zhang S,Li X,et al.LncRNA SNHG7 promotes cardiac remodeling by upregulating ROCK1 via sponging miR-34-5p[J].Aging(Albany NY),2020,12(11):10441-10456.
[27] Lai L,Xu Y,Kang L,et al.LncRNA KCNQ1OT1 contributes to cardiomyocyte apoptosis by targeting FUS in heart failure[J].Exp Mol Pathol,2020,115:104480.
[28] Zhang XL,Zhu HQ,Zhang Y,et al.LncRNA CASC2 regulates high glucose-induced proliferation,extracellular matrix accumulation and oxidative stress of human mesangial cells via miR-133b/FOXP1 axis[J].Eur Rev Med Pharmacol Sci,2020,24(2):802-812.
[29] Li Y,Zheng LL,Huang DG,et al.LNCRNA CDKN2B-AS1 regulates mesangial cell proliferation and extracellular matrix accumulation via miR-424-5p/HMGA2 axis[J].Biomed Pharmacother,2020,121:109622.
[30] Vadivel S,Vincent P,Sekaran S,et al.Inflammation in myocardial injury-Stem cells as potential immunomodulators for myocardial regeneration and restoration[J].Life Sci,2020,250:117582.
[31] Liang YP,Liu Q,Xu GH,et al.The lncRNA ROR/miR-124-3p/TRAF6 axis regulated the ischaemia reperfusion injury-induced inflammatory response in human cardiac myocytes[J].J Bioenerg Biomembr,2019,51(6):381-392.
[32] Tang X,Yin R,Shi H,et al.LncRNA ZFAS1confers inflammatory responses and reduces cholesterol efflux in atherosclerosis through regulating miR-654-3p-ADAM10/RAB22Aaxis[J].Int J Cardiol,2020,315:72-80.
[33] Hua Z,Ma K,Liu S,et al.LncRNA ZEB1-AS1facilitates ox-LDL-induced damage of HCtAEC cells and the oxidative stress and inflammatory events of THP-1cells via miR-942/HMGB1signaling[J].Life Sci,2020,247:117334.
[34] Khand A,Fisher M,Jones J,et al.The collateral circulation of the heart in coronary total arterial occlusions in man:systematic review of assessment and pathophysiology[J].Am Heart J,2013,166(6):941-952.
[35] Xu D,Liu T,He L,et al.LncRNA MEG3inhibits HMEC-1cells growth,migration and tube formation via sponging miR-147[J].Biol Chem,2020,401(5):601-615.
[36] Peng W,Feng J.Long noncoding RNA LUNAR1associates with cell proliferation and predicts a poor prognosis in diffuse large B-cell lymphoma[J].Biomed Pharmacother,2016,77:65-71.
[37] Lu W,Sheng Z,Zhang Z,et al.LncRNA-LUNAR1Levels Are Closely Related to Coronary Collaterals in Patients with Chronic Total Coronary Occlusion[J].J Cardiovasc Transl Res,2020,13(2):171-180.
[38] Zhang L,Zhang Q,Lv L,et al.LncRNA SNHG1regulates vascular endothelial cell proliferation and angiogenesis via miR-196a[J].J Mol Histol,2020,51(2):117-124.
计量
- 文章访问数: 640
- PDF下载数: 65
- 施引文献: 0