Research progress on the role of β-adrenergic receptors in cardiac remodeling after infarction
-
摘要: 心肌梗死后心脏重构涉及多种信号传导,与心力衰竭、心律失常密切相关。β肾上腺素能受体(β-AR)参与凋亡、炎症、纤维化、心肌肥大等病理过程,在梗死后心脏重构中发挥关键的调节作用。3种β-AR在梗死后重构中介导了不同的信号调节过程,交感神经持续过度刺激通过β1-AR促进不良重构,而β2-AR和β3-AR则发挥保护作用。深入了解β-AR信号传导途径将有助于开发新的药物来逆转不良重构。近年β2-AR和β3-AR的独特信号偶联以及对心脏重构产生的影响引起了广泛关注并且有望成为新的治疗靶点。实验和临床研究表明,β受体阻滞剂具有逆转心脏重构的作用。但是,不同的阻滞剂显示出不同程度的治疗效果,探索其潜在机制可能有助于开发更有效的药物。在动物模型和体外实验中,β2-AR和β3-AR激动剂均表现出抗肥大、抗氧化、抗纤维化作用,然而,这种有潜力的治疗干预在心脏重构中的作用须通过临床试验来证明。本文主要对β-AR调节梗死后心脏重构的机制,以及药物作用的潜在机制进行综述。Abstract: Cardiac remodeling after myocardial infarction involves a variety of signal transduction, which is closely related to heart failure and arrhythmia. β-adrenergic receptor(β-AR)is involved in apoptosis, inflammation, fibrosis, myocardial hypertrophy, and other pathological processes, and plays a key regulatory role in cardiac remodeling after myocardial infarction. Three kinds of β-AR mediate different signal regulation processes in post-infarction remodeling. Persistent overstimulation of the sympathetic nerve promotes adverse remodeling through β1-AR, while β2-AR and β3-AR play a protective role. In-depth understanding of β-AR signal transduction pathway will help to find a better way to reverse adverse remodeling. In recent years, the unique signal coupling of β2-AR and β3-AR and their effects on cardiac remodeling have attracted wide attention and are expected to become new therapeutic targets. Experimental and clinical studies have shown that β-blockers can reverse cardiac remodeling. However, different blockers show different degrees of therapeutic effects, and exploring their potential mechanism may help to develop more effective drugs. In animal models and in vitro experiments, β2-AR and β3-AR agonists showed anti-hypertrophy, anti-oxidation and anti-fibrosis effects. However, the role of this potential therapeutic intervention in cardiac remodeling must be proved by clinical trials. This article mainly reviews the mechanism of β-AR regulating cardiac remodeling after infarction and the potential mechanism of drug action.
-
Key words:
- cardiac remodeling /
- myocardial infarction /
- β-adrenergic receptor /
- signal transduction /
- β-blockers
-
-
[1] 段雯婷,路轶晴,马欣,等.QRS碎裂波结合血浆差异代谢物在急性心肌梗死早期诊断中的应用[J].临床心血管病杂志,2020,36(9):810-815.
[2] van der Bijl P,Abou R,Goedemans L,et al.Left Ventricular Post-Infarct Remodeling:Implications for Systolic Function Improvement and Outcomes in the Modern Era[J].JACC Heart Fail,2020,8(2):131-140.
[3] Zhao W,Zhao J,Rong J.Pharmacological Modulation of Cardiac Remodeling after Myocardial Infarction[J].Oxid Med Cell Longev,2020,2020:8815349.
[4] Bax JJ,Di Carli M,Narula J,et al.Multimodality imaging in ischaemic heart failure[J].Lancet,2019,393(10175):1056-1070.
[5] Ali DC,Naveed M,Gordon A,et al.β-Adrenergic receptor,an essential target in cardiovascular diseases[J].Heart Fail Rev,2020,25(2):343-354.
[6] Adzika GK,Machuki JO,Shang W,et al.Pathological cardiac hypertrophy:the synergy of adenylyl cyclases inhibition in cardiac and immune cells during chronic catecholamine stress[J].J Mol Med(Berl),2019,97(7):897-907.
[7] Hu Q,Zhang T,Li Y,et al.β2AR-dependent signaling contributes to in-vivo reendothelialization capacity of endothelial progenitor cells by shear stress[J].J Hypertens,2020,38(1):82-94.
[8] Laudette M,Formoso K,Lezoualc'h F.GRKs and Epac1 Interaction in Cardiac Remodeling and Heart Failure[J].Cells,2021,10(1).
[9] Kayki-Mutlu G,Karaomerlioglu I,Arioglu-Inan E,et al.Beta-3 adrenoceptors:A potential therapeutic target for heart disease[J].Eur J Pharmacol,2019,858:172468.
[10] Yang LK,Tao YX.Physiology and pathophysiology of the β3-adrenergic receptor[J].Prog Mol Biol Transl Sci,2019,161:91-112.
[11] Roy RK,Augustine RA,Brown CH,et al.Activation of oxytocin neurons in the paraventricular nucleus drives cardiac sympathetic nerve activation following myocardial infarction in rats[J].Commun Biol,2018,1:160.
[12] Bouvet M,Blondeau JP,Lezoualc'h F.The Epac1 Protein:Pharmacological Modulators,Cardiac Signalosome and Pathophysiology[J].Cells,2019,8(12).
[13] Lezcano N,Mariángelo J,Vittone L,et al.Early effects of Epac depend on the fine-tuning of the sarcoplasmic reticulum Ca2+handling in cardiomyocytes[J].J Mol Cell Cardiol,2018,114:1-9.
[14] Li CY,Zhou Q,Yang LC,et al.Dual-specificity phosphatase 14 protects the heart from aortic banding-induced cardiac hypertrophy and dysfunction through inactivation of TAK1-P38MAPK/-JNK1/2 signaling pathway[J].Basic Res Cardiol,2016,111(2):19.
[15] Mangmool S,Parichatikanond W,Kurose H.Therapeutic Targets for Treatment of Heart Failure:Focus on GRKs and β-Arrestins Affecting βAR Signaling[J].Front Pharmacol,2018,9:1336.
[16] de Lucia C,Eguchi A,Koch WJ.New Insights in Cardiac β-Adrenergic Signaling During Heart Failure and Aging[J].Front Pharmacol,2018,9:904.
[17] Meeran MF,Jagadeesh GS,Selvaraj P.Synthetic catecholamine triggers β1-adrenergic receptor activation and stimulates cardiotoxicity via oxidative stress mediated apoptotic cell death in rats:Abrogating action of thymol[J].Chem Biol Interact,2016,251:17-25.
[18] Brand CS,Lighthouse JK,Trembley MA.Protective transcriptional mechanisms in cardiomyocytes and cardiac fibroblasts[J].J Mol Cell Cardiol,2019,132:1-12.
[19] Tanner MA,Thomas TP,Maitz CA,et al.β2-Adrenergic Receptors Increase Cardiac Fibroblast Proliferation Through the Gαs/ERK1/2-Dependent Secretion of Interleukin-6[J].Int J Mol Sci,2020,21(22).
[20] Grisanti LA,Traynham CJ,Repas AA,et al.β2-Adrenergic receptor-dependent chemokine receptor 2 expression regulates leukocyte recruitment to the heart following acute injury[J].Proc Natl Acad Sci U S A,2016,113(52):15126-15131.
[21] Cannavo A,Liccardo D,Lymperopoulos A,et al.β Adrenergic Receptor Kinase C-Terminal Peptide Gene-Therapy Improves β2-Adrenergic Receptor-Dependent Neoangiogenesis after Hindlimb Ischemia[J].J Pharmacol Exp Ther,2016,356(2):503-513.
[22] Echeverría E,Cabrera M,Burghi V,et al.The Regulator of G Protein Signaling Homologous Domain of G Protein-Coupled Receptor Kinase 2 Mediates Short-Term Desensitization of β3-Adrenergic Receptor[J].Front Pharmacol,2020,11:113.
[23] Schena G,Caplan MJ.Everything You Always Wanted to Know about β3-AR *(* But Were Afraid to Ask)[J].Cells,2019,8(4).
[24] Michel L,Farah C,Balligand JL.The Beta3 Adrenergic Receptor in Healthy and Pathological Cardiovascular Tissues[J].Cells,2020,9(12).
[25] Wang XC,Sun WT,Fu J,et al.Impairment of Coronary Endothelial Function by Hypoxia-Reoxygenation Involves TRPC3 Inhibition-mediated KCa Channel Dysfunction:Implication in Ischemia-Reperfusion Injury[J].Sci Rep,2017,7(1):5895.
[26] Karimi Galougahi K,Liu CC,Garcia A,et al.β3 Adrenergic Stimulation Restores Nitric Oxide/Redox Balance and Enhances Endothelial Function in Hyperglycemia[J].J Am Heart Assoc,2016,5(2).
[27] Salie R,Alsalhin A,Marais E,et al.Cardioprotective Effects of Beta3-Adrenergic Receptor(β3-AR)Pre-,Per-,and Post-treatment in Ischemia-Reperfusion[J].Cardiovasc Drugs Ther,2019,33(2):163-177.
[28] Neginskaya MA,Pavlov EV,Sheu SS.Electrophysiological properties of the mitochondrial permeability transition pores:Channel diversity and disease implication[J].Biochim Biophys Acta Bioenerg,2021,1862(3):148357.
[29] Martínez-Milla J,Raposeiras-Roubín S,Pascual-Figal DA,et al.Role of Beta-blockers in Cardiovascular Disease in 2019[J].Rev Esp Cardiol(Engl Ed),2019,72(10):844-852.
[30] Cannavo A,Rengo G,Liccardo D,et al.β1-Blockade Prevents Post-Ischemic Myocardial Decompensation Via β3AR-Dependent Protective Sphingosine-1 Phosphate Signaling[J].J Am Coll Cardiol,2017,70(2):182-192.
[31] García-Prieto J,Villena-Gutiérrez R,Gómez M,et al.Neutrophil stunning by metoprolol reduces infarct size[J].Nat Commun,2017,8:14780.
[32] Clemente-Moragón A,Gómez M,Villena-Gutiérrez R,et al.Metoprolol exerts a non-class effect against ischaemia-reperfusion injury by abrogating exacerbated inflammation[J].Eur Heart J,2020,41(46):4425-4440.
[33] Audigane L,Persello A,Piriou N,et al.Early nebivolol treatment is beneficial in myocardial infarction in rats partly through β3-adrenoceptor remodelling[J].Clin Exp Pharmacol Physiol,2020.
[34] Arcaro A,Pirozzi F,Angelini A,et al.Novel Perspectives in Redox Biology and Pathophysiology of Failing Myocytes:Modulation of the Intramyocardial Redox Milieu for Therapeutic Interventions-A Review Article from the Working Group of Cardiac Cell Biology,Italian Society of Cardiology[J].Oxid Med Cell Longev,2016,2016:6353469.
[35] Xia J,Qu Y,Yin C,et al.Preliminary study of beta-blocker therapy on modulation of interleukin-33/ST2 signaling during ventricular remodeling after acute myocardial infarction[J].Cardiol J,2017,24(2):188-194.
[36] Wang Q,Wang Y,West TM,et al.Carvedilol induces biased β1 adrenergic receptor-Nitric oxide synthase 3-cyclic guanylyl monophosphate signaling to promote cardiac contractility[J].Cardiovasc Res,2020.
[37] Rinaldi B,Donniacuo M,Sodano L,et al.Effects of chronic treatment with the new ultra-long-acting β2-adrenoceptor agonist indacaterol alone or in combination with the β1-adrenoceptor blocker metoprolol on cardiac remodelling[J].Br J Pharmacol,2015,172(14):3627-3637.
[38] Huang J,Li C,Song Y,et al.ADRB2 polymorphism Arg16Gly modifies the natural outcome of heart failure and dictates therapeutic response to β-blockers in patients with heart failure[J].Cell Discov,2018,4:57.
[39] Grisanti LA,Thomas TP,Carter RL,et al.Pepducin-mediated cardioprotection via β-arrestin-biased β2-adrenergic receptor-specific signaling[J].Theranostics,2018,8(17):4664-4678.
[40] Carr R 3rd,Schilling J,Song J,et al.β-arrestin-biased signaling through the β2-adrenergic receptor promotes cardiomyocyte contraction[J].Proc Natl Acad Sci U S A,2016,113(28):E4107-E4116.
[41] Finan A,Demion M,Sicard P,et al.Prolonged elevated levels of c-kit+ progenitor cells after a myocardial infarction by beta 2 adrenergic receptor priming[J].J Cell Physiol,2019,234(10):18283-18296.
[42] Petta V,Perlikos F,Loukides S,et al.Therapeutic effects of the combination of inhaled beta2-agonists and beta-blockers in COPD patients with cardiovascular disease[J].Heart Fail Rev,2017,22(6):753-763.
[43] Bundgaard H,Axelsson A,Hartvig Thomsen J,et al.The first-in-man randomized trial of a beta3 adrenoceptor agonist in chronic heart failure:the BEAT-HF trial[J].Eur J Heart Fail,2017,19(4):566-575.
[44] Pouleur AC,Anker S,Brito D,et al.Rationale and design of a multicentre,randomized,placebo-controlled trial of mirabegron,a Beta3-adrenergic receptor agonist on left ventricular mass and diastolic function in patients with structural heart disease Beta3-left ventricular hypertrophy(Beta3-LVH)[J].ESC Heart Fail,2018,5(5):830-841.
-
计量
- 文章访问数: 1108
- PDF下载数: 1
- 施引文献: 0