冠心病患者血液外泌体mRNA、lncRNA及circRNA差异表达谱及竞争性内源RNA网络的构建

杨仕俊, 周子华, 陈芬. 冠心病患者血液外泌体mRNA、lncRNA及circRNA差异表达谱及竞争性内源RNA网络的构建[J]. 临床心血管病杂志, 2021, 37(7): 620-625. doi: 10.13201/j.issn.1001-1439.2021.07.007
引用本文: 杨仕俊, 周子华, 陈芬. 冠心病患者血液外泌体mRNA、lncRNA及circRNA差异表达谱及竞争性内源RNA网络的构建[J]. 临床心血管病杂志, 2021, 37(7): 620-625. doi: 10.13201/j.issn.1001-1439.2021.07.007
YANG Shijun, ZHOU Zihua, CHEN Fen. Differential expression profile of mRNA, lncRNA and circRNA in peripheral blood exosome and construction of competitive endogenous RNA network in patients with coronary heart disease[J]. J Clin Cardiol, 2021, 37(7): 620-625. doi: 10.13201/j.issn.1001-1439.2021.07.007
Citation: YANG Shijun, ZHOU Zihua, CHEN Fen. Differential expression profile of mRNA, lncRNA and circRNA in peripheral blood exosome and construction of competitive endogenous RNA network in patients with coronary heart disease[J]. J Clin Cardiol, 2021, 37(7): 620-625. doi: 10.13201/j.issn.1001-1439.2021.07.007

冠心病患者血液外泌体mRNA、lncRNA及circRNA差异表达谱及竞争性内源RNA网络的构建

详细信息
    通讯作者: 陈芬,E-mail:54113447@qq.com
  • 中图分类号: R541.4

Differential expression profile of mRNA, lncRNA and circRNA in peripheral blood exosome and construction of competitive endogenous RNA network in patients with coronary heart disease

More Information
  • 目的:通过生物信息学方法构建冠心病患者血液外泌体中的竞争性内源RNA(ceRNA)调控网络,探讨其发病机制。方法:在exoRbase数据库中下载冠心病患者和正常对照的血液外泌体测序数据,通过R语言分别对外泌体中mRNA、长链非编码RNA(lncRNA)、环状RNA(circRNA)的表达谱作差异表达分析,使用TargetScan和miRanda数据库共同预测和差异表达mRNA结合的微小RNA(miRNA),使用miRcode数据库预测与差异表达lncRNA结合的miRNA,使用starBase数据库预测与差异表达circRNA结合的miRNA。对3组miRNA两两取交集,保留与差异表达mRNA、lncRNA、circRNA两者及以上均结合的miRNA,构建ceRNA网络,使用Cytoscape软件可视化,并对差异表达基因进行GO富集和KEGG通路分析。结果:冠心病患者外周血外泌体中差异表达mRNA为569种,差异表达lncRNA为1408种,差异表达circRNA为282种。其中与差异表达mRNA相结合的miRNA有178种,与差异表达lncRNA结合的miRNA有207种,与差异表达circRNA结合的miRNA有328种,两两取交集,共保留120个共有的miRNA成功构建ceRNA网络,GO分析的结果主要富集在磷酸化、去磷酸化和脂质磷酸化等功能,KEGG分析的结果主要富集在甘油脂代谢和甘油磷脂代谢通路。结论:本研究成功构建冠心病患者血液外泌体中的ceRNA调控网络,为冠心病的诊断治疗提供新靶点。
  • 加载中
  • [1]

    GBD 2016 Mortality Collaborators.Global,regional,and national under-5 mortality,adult mortality,age-specific mortality,and life expectancy,1970-2016:a systematic analysis for the Global Burden of Disease Study 2016[J].Lancet,2017,390(10100):1084-1150.

    [2]

    世界卫生组织.心血管疾病.https://www.who.int/health-topics/cardiovascular-diseases,2020-09-24.

    [3]

    国家卫生健康委员会.中国卫生健康统计年鉴2019版[M].北京:中国协和医科大学出版社,2019:284,298.

    [4]

    胡盛寿,高润霖,刘力生,等.《中国心血管病报告2018》概要[J].中国循环杂志,2019,34(3):209-220.

    [5]

    Brinton LT,Sloane HS,Kester M,et al.Formation and role of exosomes in cancer[J].Cell Mol Life Sci,2015,72(4):659-671.

    [6]

    Bei Y,Das S,Rodosthenous RS,et al.Extracellular vesicles in cardiovascular theranostics[J].Theranostics,2017,7(17):4168-4182.

    [7]

    Panni S,Lovering RC,Porras P,et al.Non-coding RNA regulatory networks[J].Biochim Biophys Acta Gene Regul Mech,2020,1863(6):194417.

    [8]

    Tay Y,Kats L,Salmena L,et al.Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs[J].Cell,2011,147(2):344-57.

    [9]

    Li S,Li Y,Chen B,et al.exoRBase:a database of circRNA,lncRNA and mRNA in human blood exosomes[J].Nucleic Acids Res,2018,46(D1):D106-D112.

    [10]

    贺继刚,严丹,李贝贝,等.过表达GATA-4骨髓间充质干细胞通过外泌体修复心肌损伤的探讨[J].临床心血管病杂志,2017,33(9):896-901.

    [11]

    张海涛,林文勇,解曼曼,等.冠心病患者外周血外泌体中microRNA基因芯片的差异性表达[J].临床心血管病杂志,2019,35(6):501-505.

    [12]

    Tay Y,Rinn J,Pandolfi PP.The multilayered complexity of ceRNA crosstalk and competition[J].Nature,2014,505(7483):344-352.

    [13]

    Ballantyne MD,McDonald RA,Baker AH.lncRNA/MicroRNA interactions in the vasculature[J].Clin Pharmacol Ther,2016,99(5):494-501.

    [14]

    刘家汝,王超,关秀茹.ceRNA调控网络在动脉粥样硬化中的研究进展[J].中国循证心血管医学杂志,2020,12(10):1270-1272.

    [15]

    Menghini R,Stöhr R,Federici M.MicroRNAs in vascular aging and atherosclerosis[J].Ageing Res Rev,2014,17:68-78.

    [16]

    向本旭,刘婷婷,孙芳玲,等.VEGF相关信号通路在血管新生中的研究进展[J].中国比较医学杂志,2015,8(12):81-86.

    [17]

    Abeyrathna P,Su Y.The critical role of Akt in cardiovascular function[J].Vascul Pharmacol,2015,74:38-48.

    [18]

    Chandra M,Miriyala S,Panchatcharam M.PPARγ and its role in cardiovascular diseases[J].Par Res,2017,2017:1-10.

    [19]

    沈娜,贺晶,邸研博,等.CDK5介导的PPARγ磷酸化在动脉粥样硬化泡沫细胞形成过程中的作用[J].天津医药,2019,47(10):1045-1049.

    [20]

    Alberti KG,Eckel RH,Grundy SM,et al.Harmonizing the metabolic syndrome:a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention;National Heart,Lung,and Blood Institute;American Heart Association;World Heart Federation;International Atherosclerosis Society;and International Association for the Study of Obesity[J].Circulation,2009,120(16):1640-1645.

    [21]

    Zhao X,Luan YZ,Zuo X,et al.Identification of Risk Pathways and Functional Modules for Coronary Artery Disease Based on Genome-wide SNP Data[J].Genomics Proteomics Bioinformatics,2016,14(6):349-356.

    [22]

    de las Fuentes L,Yang W,Dávila-Román VG,et al.Pathway-based genome-wide association analysis of coronary heart disease identifies biologically important gene sets[J].Eur J Hum Genet,2012,20(11):1168-1173.

    [23]

    Manninen V,Tenkanen L,Koskinen P,et al.Joint effects of serum triglyceride and LDL cholesterol and HDL cholesterol concentrations on coronary heart disease risk in the Helsinki Heart Study.Implications for treatment[J].Circulation,1992,85(1):37-45.

    [24]

    Ekroos K,Jnis M,Tarasov K,et al.Lipidomics:a tool for studies of atherosclerosis[J].Curr Atheroscler Rep,2010,12(4):273-281.

    [25]

    Sutter I,Klingenberg R,Othman A,et al.Decreased phosphatidylcholine plasmalogens--A putative novel lipid signature in patients with stable coronary artery disease and acute myocardial infarction[J].Atherosclerosis,2016,246:130-40.

    [26]

    Yu F,Tie Y,Zhang Y,et al.Circular RNA expression profiles and bioinformatic analysis in coronary heart disease[J].Epigenomics,2020,12(5):439-454.

    [27]

    Wang QC,Wang ZY,Xu Q,et al.lncRNA expression profiles and associated ceRNA network analyses in epicardial adipose tissue of patients with coronary artery disease[J].Sci Rep,2021,11(1):1567.

    [28]

    Liang R,Han B,Li Q,et al.Using RNA sequencing to identify putative competing endogenous RNAs(ceRNAs)potentially regulating fat metabolism in bovine liver[J].Sci Rep,2017,7(1):6396.

    [29]

    Huang P,Huang FZ,Liu HZ,et al.LncRNA MEG3functions as a ceRNA in regulating hepatic lipogenesis by competitively binding to miR-21 with LRP6[J].Metabolism,2019,94:1-8.

  • 加载中
计量
  • 文章访问数:  509
  • PDF下载数:  254
  • 施引文献:  0
出版历程
收稿日期:  2020-12-30

目录