SGLT2抑制剂治疗心力衰竭潜在机制的新认识

廖梦阳, 廖玉华, 余淼, 等. SGLT2抑制剂治疗心力衰竭潜在机制的新认识[J]. 临床心血管病杂志, 2022, 38(1): 1-6. doi: 10.13201/j.issn.1001-1439.2022.01.001
引用本文: 廖梦阳, 廖玉华, 余淼, 等. SGLT2抑制剂治疗心力衰竭潜在机制的新认识[J]. 临床心血管病杂志, 2022, 38(1): 1-6. doi: 10.13201/j.issn.1001-1439.2022.01.001
LIAO Mengyang, LIAO Yuhua, YU Miao, et al. Novel insight into the potential mechanisms of SGLT2 inhibitors in heart failure[J]. J Clin Cardiol, 2022, 38(1): 1-6. doi: 10.13201/j.issn.1001-1439.2022.01.001
Citation: LIAO Mengyang, LIAO Yuhua, YU Miao, et al. Novel insight into the potential mechanisms of SGLT2 inhibitors in heart failure[J]. J Clin Cardiol, 2022, 38(1): 1-6. doi: 10.13201/j.issn.1001-1439.2022.01.001

SGLT2抑制剂治疗心力衰竭潜在机制的新认识

详细信息

Novel insight into the potential mechanisms of SGLT2 inhibitors in heart failure

More Information
  • 钠-葡萄糖协同转运蛋白2(SGLT2)抑制剂已成为治疗心力衰竭(心衰)的新兴药物,但其作用机制尚不清楚。健康人心肌细胞仅表达SGLT1,SGLT2定位在肾脏近曲小管和心外膜脂肪组织(EAT),在疾病状态下高表达。舒张性心衰患者发生EAT堆积,EAT高表达SGLT2和分泌脂肪细胞因子,介导心肌纤维化和心肌肥厚;心肌细胞高表达SGLT1介导细胞内Na+超载。基于SGLT2/1在心脏和肾脏的分布,我们推测SGLT2抑制剂治疗心衰的潜在作用机制主要涉及心脏血流动力学和心脏代谢重构,EAT-SGLT2可能是心脏代谢重构防治的重要靶点。
  • 加载中
  • 图 1  SGLT2抑制剂治疗心衰的潜在作用机制

    Figure 1.  The potential mechanisms of SGLT2 inhibitors in heart failure

    表 1  SGLT2抑制剂降低EAT容积或厚度的临床研究

    Table 1.  Clinical research of the SGLT2 inhibitors reduced volume or thickness of the EAT

    药物 T2DM/例 治疗时间 EAT检测方法 EAT结果 参考文献
    SGLT2抑制剂 53 24周 超声心动图 (37.8±17.2) cm3:(20.7±7.0) cm3P < 0.001 [27]
    卡格列净Canagliflozin 13 6个月 超声心动图 (9.3 ± 2.5) mm:(7.3 ± 2.0) mm,P < 0.001 [28]
    鲁格列净Luseogliflozin 19 12周 心脏磁共振 117(96,136) cm3:111(88,134) cm3P=0.048 [29]
    达格列净Dapagliflozin 40 6个月 超声心动图 (16.4 ± 8.3) cm3:(4.7 ± 8.8) cm3P=0.01 [30]
    依格列净Lpragliflozin 9 12周 心脏磁共振 102(79,126) cm3:89(66,109) cm3P=0.008 [31]
    恩格列净Empagliflozin 56 12周 心脏磁共振 V1(108.5 ± 31.8) mL:V3(106.9 ± 31.8) mL,P=0.09 [32]
    下载: 导出CSV
  • [1]

    SOLVD Investigators, Yusuf S, Pitt B, et al. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure[J]. N Engl J Med, 1991, 325(5): 293-302. doi: 10.1056/NEJM199108013250501

    [2]

    CIBIS-Ⅱ Investigators and Committee. The Cardiac Insufficiency Bisoprolol Study Ⅱ(CIBIS-Ⅱ): a randomised trial[J]. Lancet, 1999, 353(9146): 9-13. doi: 10.1016/S0140-6736(98)11181-9

    [3]

    Zannad F, McMurray JJ, Krum H, et al. Eplerenone in patients with systolic heart failure and mild symptoms[J]. N Engl J Med, 2011, 364(1): 11-21. doi: 10.1056/NEJMoa1009492

    [4]

    McMurray JJ, Packer M, Desai AS, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure[J]. N Engl J Med, 2014, 371(11): 993-1004. doi: 10.1056/NEJMoa1409077

    [5]

    McMurray J, Solomon SD, Inzucchi SE, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction[J]. N Engl J Med, 2019, 381(21): 1995-2008. doi: 10.1056/NEJMoa1911303

    [6]

    Packer M, Anker SD, Butler J, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure[J]. N Engl J Med, 2020, 383(15): 1413-1424. doi: 10.1056/NEJMoa2022190

    [7]

    Anker SD, Butler J, Filippatos G, et al. Empagliflozin in heart failure with a preserved ejection fraction[J]. N Engl J Med, 2021, 385(16): 1451-1461. doi: 10.1056/NEJMoa2107038

    [8]

    Bhatt DL, Szarek M, Steg PG, et al. Sotagliflozin in patients with diabetes and recent worsening heart failure[J]. N Engl J Med, 2021, 384(2): 117-128. doi: 10.1056/NEJMoa2030183

    [9]

    Bhatt DL, Szarek M, Pitt B, et al. Sotagliflozin in patients with diabetes and chronic kidney disease[J]. N Engl J Med, 2021, 384(2): 129-139. doi: 10.1056/NEJMoa2030186

    [10]

    Yuliya L, Petter B, Udell JA, et al. Sodium glucose cotransporter-2 inhibition in heart failure: potential mechanisms, clinical applications and summary of clinical trials[J]. Circulation, 2017, 136(17): 1643-1658. doi: 10.1161/CIRCULATIONAHA.117.030012

    [11]

    List JF, Woo V, Morales E, et al. Sodium-glucose cotransport inhibition with dapagliflozin in type 2 diabetes[J]. Diabetes Care, 2009, 32(4): 650-657. doi: 10.2337/dc08-1863

    [12]

    Koepp KE, Obokata M, Reddy Y, et al. Hemodynamic and functional impact of epicardial adipose tissue in heart failure with preserved ejection fraction[J]. JACC Heart Fail, 2020, 8(8): 657-666. doi: 10.1016/j.jchf.2020.04.016

    [13]

    Lan N, Yeap BB, Fegan PG, et al. Empagliflozin and left ventricular diastolic function following an acute coronary syndrome in patients with type 2 diabetes[J]. Int J Cardiovasc Imaging, 2021, 37(2): 517-527. doi: 10.1007/s10554-020-02034-w

    [14]

    中国心衰中心联盟. 舒张性心力衰竭早期防治专家建议[J]. 临床心血管病杂志, 2021, 37(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-LCXB202101001.htm

    [15]

    Zhou L, Cryan EV, D'Andrea MR, et al. Human cardiomyocytes express high level of Na+/glucose cotransporter 1(SGLT1)[J]. J Cell Biochem, 2003, 90(2): 339-346. doi: 10.1002/jcb.10631

    [16]

    Di Franco A, Cantini G, Tani A, et al. Sodium-dependent glucose transporters(SGLT)in human ischemic heart: A new potential pharmacological target[J]. Int J Cardiol, 2017, 243: 86-90. doi: 10.1016/j.ijcard.2017.05.032

    [17]

    Banerjee SK, McGaffin KR, Pastor-Soler NM et al. SGLT1 is a novel cardiac glucose transporter that is perturbed in disease states[J]. Cardiovascular Research, 2009, 84(1): 111-118. doi: 10.1093/cvr/cvp190

    [18]

    Lambert R, Srodulski S, Peng XL, et al. Intracellular Na+ Concentration([Na+]i)is elevated in diabetic hearts due to enhanced Na+-glucose cotransport[J]. J Am Heart Assoc, 2015, 4(9): e002183. doi: 10.1161/JAHA.115.002183

    [19]

    Sayour AA, Oláh A, Ruppert M, et al. Characterization of left ventricular myocardial sodium-glucose cotransporter 1 expression in patients with end-stage heart failure[J]. Cardiovasc Diabetol, 2020, 19(1): 159. doi: 10.1186/s12933-020-01141-1

    [20]

    Díaz-Rodríguez E, Agra RM, Fernández ÁL, et al. Effects of dapagliflozin on human epicardial adipose tissue: modulation of insulin resistance, inflammatory chemokine production, and differentiation ability[J]. Cardiovasc Res, 2018, 114(2): 336-346. doi: 10.1093/cvr/cvx186

    [21]

    Mazurek T, Zhang L, Zalewski A, et al. Human epicardial adipose tissue is a source of inflammatory mediators[J]. Circulation, 2003, 108(20): 2460-2466. doi: 10.1161/01.CIR.0000099542.57313.C5

    [22]

    Requena-Ibáñez JA, Santos-Gallego CG, Rodriguez-Cordero A, et al. Mechanistic insights of empagliflozin in nondiabetic patients with HFrEF: from the EMPA-TROPISM study[J]. JACC Heart Fail, 2021, 9(8): 578-589. doi: 10.1016/j.jchf.2021.04.014

    [23]

    Christensen RH, von Scholten BJ, Hansen CS, et al. Epicardial adipose tissue predicts incident cardiovascular disease and mortality in patients with type 2 diabetes[J]. Cardiovasc Diabetol, 2019, 18(1): 114. doi: 10.1186/s12933-019-0917-y

    [24]

    Baartscheer A, Schumacher CA, Wust RC, et al. Empagliflozin decreases myocardial cytoplasmic Na+ through inhibition of the cardiac Na+/H+exchanger in rats and rabbits[J]. Diabetologia, 2017, 60(3): 568-573. doi: 10.1007/s00125-016-4134-x

    [25]

    Vianello E, Dozio E, Bandera F, et al. Dysfunctional EAT thickness may promote maladaptive heart remodeling in CVD patients through the ST2-IL33 system, directly related to EPAC protein expression[J]. Scientific Reports, 2019, 9(1): 10331. doi: 10.1038/s41598-019-46676-w

    [26]

    Toczylowski K, Hirnle T, Harasiuk D, et al. Plasma concentration and expression of adipokines in epicardial and subcutaneous adipose tissue are associated with impaired left ventricular filling pattern[J]. J Transl Med, 2019, 17(1): 310. doi: 10.1186/s12967-019-2060-7

    [27]

    Braha A, Timar B, Diaconu L, et al. Dynamics of epicardiac fat and heart function in type 2 diabetic patients initiated with SGLT-2 Inhibitors. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2019, 12: 2559-2566.

    [28]

    Yagi S, Hirata Y, Ise T, et al. Canagliflozin reduces epicardial fat in patients with type 2 diabetes mellitus[J]. Diabetol Metab Syndr, 2017, 9: 78. doi: 10.1186/s13098-017-0275-4

    [29]

    Bouchi R, Terashima M, Sasahara Y, et al. Luseogliflozin reduces epicardial fat accumulation in patients with type 2 diabetes: a pilot study[J]. Cardiovasc Diabetol, 2017, 16(1): 32. doi: 10.1186/s12933-017-0516-8

    [30]

    Sato T, Aizawa Y, Yuasa S, et al. The effect of dapagliflozin treatment on epicardial adipose tissue volume[J]. Cardiovasc Diabetol, 2018, 17(1): 6. doi: 10.1186/s12933-017-0658-8

    [31]

    Fukuda T, Bouchi R, Terashima M, et al. Ipragliflozin reduces epicardial fat accumulation in non-obese type 2 diabetic patients with visceral obesity: a pilot study[J]. Diabetes Ther, 2017, 8(4): 851-861. doi: 10.1007/s13300-017-0279-y

    [32]

    Gaborit B, Ancel P, Abdullah AE, et al. Effect of empagliflozin on ectopic fat stores and myocardial energetics in type 2 diabetes: the EMPACEF study[J]. Cardiovasc Diabetol, 2021, 20(1): 57. doi: 10.1186/s12933-021-01237-2

    [33]

    Iacobellis G, Gra-MenendezS. Effects of dapagliflozin on epicardial fat thickness in patients with type 2 diabetes and obesity[J]. Obesity(Silver Spring), 2020, 28(6): 1068-1074.

  • 加载中

(1)

(1)

计量
  • 文章访问数:  2210
  • PDF下载数:  1043
  • 施引文献:  0
出版历程
收稿日期:  2021-11-10
刊出日期:  2022-01-13

目录