钠-葡萄糖共转运体2型抑制剂与心律失常的关系及进展

吴金春, 刘韬, 黄从新. 钠-葡萄糖共转运体2型抑制剂与心律失常的关系及进展[J]. 临床心血管病杂志, 2022, 38(8): 675-679. doi: 10.13201/j.issn.1001-1439.2022.08.015
引用本文: 吴金春, 刘韬, 黄从新. 钠-葡萄糖共转运体2型抑制剂与心律失常的关系及进展[J]. 临床心血管病杂志, 2022, 38(8): 675-679. doi: 10.13201/j.issn.1001-1439.2022.08.015
WU Jinchun, LIU Tao, HUANG Congxin. The relationship and research progress of sodium glucose cotransporter 2 inhibitors and arrhythmia[J]. J Clin Cardiol, 2022, 38(8): 675-679. doi: 10.13201/j.issn.1001-1439.2022.08.015
Citation: WU Jinchun, LIU Tao, HUANG Congxin. The relationship and research progress of sodium glucose cotransporter 2 inhibitors and arrhythmia[J]. J Clin Cardiol, 2022, 38(8): 675-679. doi: 10.13201/j.issn.1001-1439.2022.08.015

钠-葡萄糖共转运体2型抑制剂与心律失常的关系及进展

  • 基金项目:
    湖北省技术创新专项重大项目(No:2016ACA153);青海省科技厅应用基础研究项目(2022-ZJ-758)
详细信息

The relationship and research progress of sodium glucose cotransporter 2 inhibitors and arrhythmia

More Information
  • 钠-葡萄糖共转运体2型抑制剂(SGLT2i)是一种具有较好的心血管及肾脏保护作用的新型口服降糖药,相关基础及临床研究报道SGLT2i也具有较好的抗心律失常作用,然而其具体机制尚不明确,目前亦无SGLT2i抗心律失常作用的直接研究证据报告,其中关于SGLT2i对NHE1活性和Na+平衡的报道尚不一致。本文复习归纳国内外关于SGLT2i抑制心律失常的相关文献报道,结合最新研究证据,就SGLT2i与抑制心律失常相关的临床证据、实验研究以及可能的机制等作一综述。
  • 加载中
  • [1]

    Ni L, Yuan C, Chen G, et al. SGLT2i: beyond the glucose-lowering effect[J]. Cardiovasc Diabetol, 2020, 19(1): 98. doi: 10.1186/s12933-020-01071-y

    [2]

    Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes[J]. N Engl J Med, 2019, 380(4): 347-357. doi: 10.1056/NEJMoa1812389

    [3]

    中国心衰中心联盟. 舒张性心力衰竭早期防治专家建议[J]. 临床心血管病杂志, 2021, 37(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-LCXB202101001.htm

    [4]

    Banerjee SK, McGaffin KR, Pastor-Soler NM, et al. SGLT1 is a novel cardiac glucose transporter that is perturbed in disease states[J]. Cardiovasc Res, 2009, 84(1): 111-118. doi: 10.1093/cvr/cvp190

    [5]

    Chen J, Williams S, Ho S, et al. Quantitative PCR tissue expression profiling of the human SGLT2 gene and related family members[J]. Diabetes Ther, 2010, 1(2): 57-92. doi: 10.1007/s13300-010-0006-4

    [6]

    Zelniker TA, Bonaca MP, Furtado R, et al. Effect of Dapagliflozin on Atrial Fibrillation in Patients With Type 2 Diabetes Mellitus: Insights From the DECLARE-TIMI 58 Trial[J]. Circulation, 2020, 141(15): 1227-1234. doi: 10.1161/CIRCULATIONAHA.119.044183

    [7]

    Fernandes GC, Fernandes A, Cardoso R, et al. Association of SGLT2 inhibitors with arrhythmias and sudden cardiac death in patients with type 2 diabetes or heart failure: A meta-analysis of 34 randomized controlled trials[J]. Heart Rhythm, 2021, 18(7): 1098-1105. doi: 10.1016/j.hrthm.2021.03.028

    [8]

    Shao Q, Meng L, Lee S, et al. Empagliflozin, a sodium glucose co-transporter-2 inhibitor, alleviates atrial remodeling and improves mitochondrial function in high-fat diet/streptozotocin-induced diabetic rats[J]. Cardiovasc Diabetol, 2019, 18(1): 165. doi: 10.1186/s12933-019-0964-4

    [9]

    Mustroph J, Wagemann O, Lücht CM, et al. Empagliflozin reduces Ca/calmodulin-dependent kinase Ⅱ activity in isolated ventricular cardiomyocytes[J]. ESC Heart Fail, 2018, 5(4): 642-648. doi: 10.1002/ehf2.12336

    [10]

    Curtain JP, Docherty KF, Jhund PS, et al. Effect of dapagliflozin on ventricular arrhythmias, resuscitated cardiac arrest, or sudden death in DAPA-HF[J]. Eur Heart J, 2021, 42(36): 3727-3738. doi: 10.1093/eurheartj/ehab560

    [11]

    Li D, Liu Y, Hidru TH, et al. Protective Effects of Sodium-Glucose Transporter 2 Inhibitors on Atrial Fibrillation and Atrial Flutter: A Systematic Review and Meta-Analysis of Randomized Placebo-Controlled Trials[J]. Front Endocrinol(Lausanne), 2021, 12: 619586. doi: 10.3389/fendo.2021.619586

    [12]

    Li HL, Lip G, Feng Q, et al. Sodium-glucose cotransporter 2 inhibitors(SGLT2i)and cardiac arrhythmias: a systematic review and meta-analysis[J]. Cardiovasc Diabetol, 2021, 20(1): 100. doi: 10.1186/s12933-021-01293-8

    [13]

    Janse MJ. Electrophysiological changes in heart failure and their relationship to arrhythmogenesis[J]. Cardiovasc Res, 2004, 61(2): 208-217. doi: 10.1016/j.cardiores.2003.11.018

    [14]

    Bode D, Semmler L, Wakula P, et al. Dual SGLT-1 and SGLT-2 inhibition improves left atrial dysfunction in HFpEF[J]. Cardiovasc Diabetol, 2021, 20(1): 7. doi: 10.1186/s12933-020-01208-z

    [15]

    Lee TI, Chen YC, Lin YK, et al. Empagliflozin Attenuates Myocardial Sodium and Calcium Dysregulation and Reverses Cardiac Remodeling in Streptozotocin-Induced Diabetic Rats[J]. Int J Mol Sci, 2019, 20(7).

    [16]

    Vila-Petroff M, Mundiña-Weilenmann C, Lezcano N, et al. Ca2+/calmodulin-dependent protein kinase Ⅱ contributes to intracellular pH recovery from acidosis via Na+/H+exchanger activation[J]. J Mol Cell Cardiol, 2010, 49(1): 106-112. doi: 10.1016/j.yjmcc.2009.12.007

    [17]

    Hamouda NN, Sydorenko V, Qureshi MA, et al. Dapagliflozin reduces the amplitude of shortening and Ca(2+)transient in ventricular myocytes from streptozotocin-induced diabetic rats[J]. Mol Cell Biochem, 2015, 400(1-2): 57-68. doi: 10.1007/s11010-014-2262-5

    [18]

    Hess P, Lansman JB, Tsien RW. Different modes of Ca channel gating behaviour favoured by dihydropyridine Ca agonists and antagonists[J]. Nature, 1984, 311(5986): 538-544. doi: 10.1038/311538a0

    [19]

    Xie W, Santulli G, Reiken SR, et al. Mitochondrial oxidative stress promotes atrial fibrillation[J]. Sci Rep, 2015, 5: 11427. doi: 10.1038/srep11427

    [20]

    Baartscheer A, Schumacher CA, Wüst RC, et al. Empagliflozin decreases myocardial cytoplasmic Na+through inhibition of the cardiac Na+/H+ exchanger in rats and rabbits[J]. Diabetologia, 2017, 60(3): 568-573. doi: 10.1007/s00125-016-4134-x

    [21]

    Echt DS, Liebson PR, Mitchell LB, et al. Mortality and morbidity in patients receiving encainide, flecainide, or placebo. The Cardiac Arrhythmia Suppression Trial[J]. N Engl J Med, 1991, 324(12): 781-788. doi: 10.1056/NEJM199103213241201

    [22]

    Filippatos TD, Liontos A, Papakitsou I, et al. SGLT2 inhibitors and cardioprotection: a matter of debate and multiple hypotheses[J]. Postgrad Med, 2019, 131(2): 82-88. doi: 10.1080/00325481.2019.1581971

    [23]

    Bertero E, Prates Roma L, Ameri P, et al. Cardiac effects of SGLT2 inhibitors: the sodium hypothesis[J]. Cardiovasc Res, 2018, 114(1): 12-18. doi: 10.1093/cvr/cvx149

    [24]

    Uthman L, Baartscheer A, Bleijlevens B, et al. Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: inhibition of Na+/H+ exchanger, lowering of cytosolic Na+ and vasodilation[J]. Diabetologia, 2018, 61(3): 722-726. doi: 10.1007/s00125-017-4509-7

    [25]

    Philippaert K, Kalyaanamoorthy S, Fatehi M, et al. Cardiac Late Sodium Channel Current Is a Molecular Target for the Sodium/Glucose Cotransporter 2 Inhibitor Empagliflozin[J]. Circulation, 2021, 143(22): 2188-2204. doi: 10.1161/CIRCULATIONAHA.121.053350

    [26]

    Chung YJ, Park KC, Tokar S, et al. Off-target effects of SGLT2 blockers: empagliflozin does not inhibit Na+/H+ exchanger-1 or lower[Na+]i in the heart[J]. Cardiovasc Res, 2021, 117(14): 2794-2806. doi: 10.1093/cvr/cvaa323

    [27]

    Van Steenbergen A, Balteau M, Ginion A, et al. Sodium-myoinositol cotransporter-1, SMIT1, mediates the production of reactive oxygen species induced by hyperglycemia in the heart[J]. Sci Rep, 2017, 7: 41166. doi: 10.1038/srep41166

    [28]

    周子华. 新型降糖药物的降压作用[J]. 临床心血管病杂志, 2021, 37(8): 692-694. https://www.cnki.com.cn/Article/CJFDTOTAL-LCXB202108002.htm

    [29]

    Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis[J]. J Am Coll Cardiol, 2010, 55(13): 1318-1327. doi: 10.1016/j.jacc.2009.10.061

    [30]

    Solini A, Giannini L, Seghieri M, et al. Dapagliflozin acutely improves endothelial dysfunction, reduces aortic stiffness and renal resistive index in type 2 diabetic patients: a pilot study[J]. Cardiovasc Diabetol, 2017, 16(1): 138. doi: 10.1186/s12933-017-0621-8

    [31]

    Santos-Gallego CG, Requena-Ibanez JA, San Antonio R, et al. Empagliflozin Ameliorates Adverse Left Ventricular Remodeling in Nondiabetic Heart Failure by Enhancing Myocardial Energetics[J]. J Am Coll Cardiol, 2019, 73(15): 1931-1944. doi: 10.1016/j.jacc.2019.01.056

    [32]

    Durak A, Olgar Y, Degirmenci S, et al. A SGLT2 inhibitor dapagliflozin suppresses prolonged ventricular-repolarization through augmentation of mitochondrial function in insulin-resistant metabolic syndrome rats[J]. Cardiovasc Diabetol, 2018, 17(1): 144. doi: 10.1186/s12933-018-0790-0

    [33]

    Heerspink HJ, Perkins BA, Fitchett DH, et al. Sodium Glucose Cotransporter 2 Inhibitors in the Treatment of Diabetes Mellitus: Cardiovascular and Kidney Effects, Potential Mechanisms, and Clinical Applications[J]. Circulation, 2016, 134(10): 752-772. doi: 10.1161/CIRCULATIONAHA.116.021887

    [34]

    Byrne NJ, Matsumura N, Maayah ZH, et al. Empagliflozin Blunts Worsening Cardiac Dysfunction Associated With Reduced NLRP3(Nucleotide-Binding Domain-Like Receptor Protein 3) Inflammasome Activation in Heart Failure[J]. Circ Heart Fail, 2020, 13(1): e006277. doi: 10.1161/CIRCHEARTFAILURE.119.006277

    [35]

    Lee HC, Shiou YL, Jhuo SJ, et al. The sodium-glucose co-transporter 2 inhibitor empagliflozin attenuates cardiac fibrosis and improves ventricular hemodynamics in hypertensive heart failure rats[J]. Cardiovasc Diabetol, 2019, 18(1): 45. doi: 10.1186/s12933-019-0849-6

    [36]

    Xue L, Yuan X, Zhang S, et al. Investigating the Effects of Dapagliflozin on Cardiac Function, Inflammatory Response, and Cardiovascular Outcome in Patients with STEMI Complicated with T2DM after PCI[J]. Evid Based Complement Alternat Med, 2021, 2021: 9388562.

    [37]

    Tanaka H, Soga F, Tatsumi K, et al. Positive effect of dapagliflozin on left ventricular longitudinal function for type 2 diabetic mellitus patients with chronic heart failure[J]. Cardiovasc Diabetol, 2020, 19(1): 6. doi: 10.1186/s12933-019-0985-z

    [38]

    Sano M. A new class of drugs for heart failure: SGLT2 inhibitors reduce sympathetic overactivity[J]. J Cardiol, 2018, 71(5): 471-476. doi: 10.1016/j.jjcc.2017.12.004

    [39]

    Zhang N, Feng B, Ma X, et al. Dapagliflozin improves left ventricular remodeling and aorta sympathetic tone in a pig model of heart failure with preserved ejection fraction[J]. Cardiovasc Diabetol, 2019, 18(1): 107.

    [40]

    Wan N, Rahman A, Hitomi H, et al. The Effects of Sodium-Glucose Cotransporter 2 Inhibitors on Sympathetic Nervous Activity[J]. Front Endocrinol(Lausanne), 2018, 9: 421.

    [41]

    Chhabra KH, Morgan DA, Tooke BP, et al. Reduced renal sympathetic nerve activity contributes to elevated glycosuria and improved glucose tolerance in hypothalamus-specific Pomc knockout mice[J]. Mol Metab, 2017, 6(10): 1274-1285.

    [42]

    Park SH, Farooq MA, Gaertner S, et al. Empagliflozin improved systolic blood pressure, endothelial dysfunction and heart remodeling in the metabolic syndrome ZSF1 rat[J]. Cardiovasc Diabetol, 2020, 19(1): 19.

    [43]

    Lee PC, Ganguly S, Goh SY. Weight loss associated with sodium-glucose cotransporter-2 inhibition: a review of evidence and underlying mechanisms[J]. Obes Rev, 2018, 19(12): 1630-1641.

    [44]

    Mirabelli M, Chiefari E, Caroleo P, et al. Long-Term Effectiveness and Safety of SGLT-2 Inhibitors in an Italian Cohort of Patients with Type 2 Diabetes Mellitus[J]. J Diabetes Res, 2019, 2019: 3971060.

    [45]

    Deerochanawong C, Chan SP, Matawaran BJ, et al. Use of sodium-glucose co-transporter-2 inhibitors in patients with type 2 diabetes mellitus and multiple cardiovascular risk factors: An Asian perspective and expert recommendations[J]. Diabetes Obes Metab, 2019, 21(11): 2354-2367.

    [46]

    Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy[J]. N Engl J Med, 2019, 380(24): 2295-2306.

    [47]

    Ye Y, Zhao C, Liang J, et al. Effect of Sodium-Glucose Co-transporter 2 Inhibitors on Bone Metabolism and Fracture Risk[J]. Front Pharmacol, 2018, 9: 1517.

    [48]

    Fralick M, Schneeweiss S, Patorno E. Risk of Diabetic Ketoacidosis after Initiation of an SGLT2 Inhibitor[J]. N Engl J Med, 2017, 376(23): 2300-2302.

  • 加载中
计量
  • 文章访问数:  1195
  • PDF下载数:  345
  • 施引文献:  0
出版历程
收稿日期:  2021-11-17
刊出日期:  2022-08-13

目录