靶向RNA治疗在胆固醇浓度管理中的应用现状和展望

陈红, 伍满燕. 靶向RNA治疗在胆固醇浓度管理中的应用现状和展望[J]. 临床心血管病杂志, 2022, 38(9): 687-691. doi: 10.13201/j.issn.1001-1439.2022.09.001
引用本文: 陈红, 伍满燕. 靶向RNA治疗在胆固醇浓度管理中的应用现状和展望[J]. 临床心血管病杂志, 2022, 38(9): 687-691. doi: 10.13201/j.issn.1001-1439.2022.09.001
CHEN Hong, WU Manyan. RNA-targeted therapeutics for management of circulating cholesterol concentration: current state and perspectives[J]. J Clin Cardiol, 2022, 38(9): 687-691. doi: 10.13201/j.issn.1001-1439.2022.09.001
Citation: CHEN Hong, WU Manyan. RNA-targeted therapeutics for management of circulating cholesterol concentration: current state and perspectives[J]. J Clin Cardiol, 2022, 38(9): 687-691. doi: 10.13201/j.issn.1001-1439.2022.09.001

靶向RNA治疗在胆固醇浓度管理中的应用现状和展望

详细信息

RNA-targeted therapeutics for management of circulating cholesterol concentration: current state and perspectives

More Information
  • 低密度脂蛋白胆固醇(LDL-C)是防治动脉粥样硬化性心血管疾病的主要靶点。随着LDL-C目标值不断降低,现有的包括他汀类、依折麦布在内的小分子降胆固醇药物的作用短暂、特异性差,已不能满足临床需求。相反,基于基因沉默或基因编辑机制,特别是利用小干扰RNA(siRNA)或反义寡核苷酸(ASO)选择性沉默在脂质代谢过程中起关键作用的基因(如PCSK9)的核酸疗法,可实现长期有效甚至治愈。先进的肝脏靶向递送技术(如核酸与N-乙酰半乳糖胺耦联)更是极大提高了靶向RNA药物的稳定性、特异性和安全性,降低了药物剂量,也减少了脱靶效应。目前已有多种靶向RNA的降胆固醇药物应用于临床,标志着精准降脂的新时代已经到来,期待后续的临床研究在解决与血脂相关的剩余心血管风险方面取得重大突破。
  • 加载中
  • 表 1  美国FDA批准的基于RNA的疗法

    Table 1.  RNA-based therapies approved by FDA

    药物 批准日期 适应证
    Fomivirsen 1998年 巨细胞病毒性视网膜炎
    Pegaptinib 2004年 新生血管性年龄相关性黄斑变性
    Mipomersen 2013年 家族性高胆固醇血症
    Etplirsen 2016年 杜氏肌营养不良
    Defibrotide 2016年 肝小静脉闭塞性疾病
    Patisiran 2018年 遗传性转甲状腺素蛋白介导的淀粉样变性的多发性神经病
    Givosiran 2019年 急性肝卟啉症
    Inclisiran 2021年 杂合子家族性高胆固醇血症或临床动脉粥样硬化性心血管疾病
    下载: 导出CSV

    表 2  Inclisiran与PCSK9单克隆抗体的比较

    Table 2.  Comparison of Inclisiran and PCSK9 monoclonal antibodies

    项目 Inclisiran 依洛尤单抗和阿利西尤单抗
    作用机制 抑制PCSK9的翻译 抑制PCSK9与LDLR的结合
    靶点位置 肝细胞内 细胞外
    给药方式 皮下注射 皮下注射
    给药频率 1次/6个月 1次/2~4周
    对PCSK9水平的影响 减少 增加
    LDLR:低密度脂蛋白受体。
    下载: 导出CSV

    表 3  Inclisiran的重要临床研究

    Table 3.  Important clinical studies of Inclisiran

    研究 阶段 研究对象 主要终点 对照 随访时间 状态
    ORION-1 LDL-C增高的ASCVD等危者 LDL-C ↓% 180 d 完成
    ORION-2 HoFH LDL-C ↓% 180 d 完成
    ORION-3 完成ORION-1者 第210天LDL-C ↓% 依洛尤单抗 4年 准备
    ORION-4 ASCVD MACE 安慰剂 5年 招募
    ORION-5 HoFH LDL-C ↓% 安慰剂 720 d 准备
    ORION-6 肝损害 不同肝功能时的药代 180 d 完成
    ORION-7 肾损害 不同肾功能时的药代 60 d 完成
    ORION-8 开放标签,ORION-5、9、10和11的延续 LDL-C<70 mg/dL和100 mg/dL的% 安慰剂 1080 d 准备
    ORION-9 HeFH和LDL-C增高 LDL-C ↓% 安慰剂 510 d 完成
    ORION-10 LDL-C高的ASCVD LDL-C ↓% 安慰剂 510 d 完成
    ORION-11 LDL-C高的ASCVD或等危 LDL-C ↓% 安慰剂 510 d 完成
    ORION-12 健康人 Q-T间期和ECG变化 安慰剂 180 d 进行
    ORION-13 12~18岁的HoFH LDL-C ↓% 安慰剂 720 d 招募
    ORION-14 降脂治疗后LDL-C仍高的中国人 中国人的药代和LDL-C ↓% 安慰剂 90 d 招募
    ORION-15 LDL-C高的日本人 日本人的药代和LDL-C ↓% 安慰剂 180 d 招募
    ORION-16 青少年HeFH,且LDL-C高 LDL-C ↓% 安慰剂 720 d 招募
    ORION-17 一级预防
    ORION-18 LDL-C高的ASCVD或等危的亚洲人 LDL-C ↓% 安慰剂 360 d 招募
    VICTORION-INITIATE LDL-C>70 mg/dL的ASCVD或等危 LDL-C ↓%和终止用他汀 常规 330 d 招募
    VICTORION-INCEPTION 5周内发生ACS者 LDL-C ↓%,<70 mg/dL的% 常规 360 d 招募
    VICTORION-2 PREVENT 确诊的心血管病患者 3P-MACE(心血管死亡、非致死性心肌梗死和缺血性卒中) 安慰剂 6年 准备
    ACS:急性冠状动脉综合征;ECG:心电图;MACE:主要心血管不良事件。
    下载: 导出CSV

    表 4  血脂管理相关的RNA治疗

    Table 4.  RNA therapy related to lipid management

    基于RNA的治疗 靶点 性质 修饰
    CiVi007[13] PCSK9 ASO LNA
    Inclisiran [14] PCSK9 siRNA GalNAc偶联物
    Mipomersen [15] Apo B100 ASO 添加2'-O-甲氧基乙基修饰的核糖
    Pelacarsen[16] Apo(a) ASO GalNAc偶联物
    Olpasiran [17] Apo(a) siRNA GalNAc偶联物
    Vupanorsen[18] ANGPTL3 ASO GalNAc偶联物
    ARO-ANG3[19] ANGPTL3 siRNA GalNAc偶联物
    Volanesorsen [20] Apo C3 ASO 添加2'-O-甲氧基乙基修饰的核糖
    ARO-APOC3[19] Apo C3 siRNA GalNAc偶联物
    LNA:锁核酸。
    下载: 导出CSV
  • [1]

    Zhao D, Liu J, Wang M, et al. Epidemiology of cardiovascular disease in China: current features and implications[J]. Nat Rev Cardiol, 2019, 16(4): 203-212. doi: 10.1038/s41569-018-0119-4

    [2]

    Ray KK, Molemans B, Schoonen WM, et al. EU-Wide cross-sectional observational study of lipid-modifying therapy use in secondary and primary care: the DA VINCI study[J]. Eur J Prev Cardiol, 2021, 28(11): 1279-1289. doi: 10.1093/eurjpc/zwaa047

    [3]

    Halloy F, Biscans A, Bujold KE, et al. Innovative developments and emerging technologies in RNA therapeutics[J]. RNA Biol, 2022, 19(1): 313-332. doi: 10.1080/15476286.2022.2027150

    [4]

    Arsenault BJ. The promise and challenges of RNA-targeted therapeutics in preventive cardiology[J]. Eur Heart J, 2022, 43(7): 550-552. doi: 10.1093/eurheartj/ehab462

    [5]

    Kulkarni JA, Witzigmann D, Thomson SB, et al. The current landscape of nucleic acid therapeutics[J]. Nat Nanotechnol, 2021, 16(6): 630-643. doi: 10.1038/s41565-021-00898-0

    [6]

    Tokgözo lu L, Libby P. The dawn of a new era of targeted lipid-lowering therapies[J]. Eur Heart J, 2022: ehab841.

    [7]

    Maligłówka M, Kosowski M, Hachuła M, et al. Insight into the evolving role of PCSK9[J]. Metabolites, 2022, 12(3): 256. doi: 10.3390/metabo12030256

    [8]

    Fitzgerald K, White S, Borodovsky A, et al. A Highly Durable RNAi Therapeutic Inhibitor of PCSK9[J]. N Engl J Med, 2017, 376(1): 41-51. doi: 10.1056/NEJMoa1609243

    [9]

    Fitzgerald K, Frank-Kamenetsky M, Shulga-Morskaya S, et al. Effect of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9(PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers: a randomised, single-blind, placebo-controlled, phase 1 trial[J]. Lancet, 2014, 383(9911): 60-68. doi: 10.1016/S0140-6736(13)61914-5

    [10]

    Hovingh GK, Lepor NE, Kallend D, et al. Inclisiran durably lowers low-density lipoprotein cholesterol and proprotein convertase subtilisin/kexin type 9 expression in homozygous familial hypercholesterolemia: The ORION-2 Pilot Study[J]. Circulation, 2020, 141(22): 1829-1831. doi: 10.1161/CIRCULATIONAHA.119.044431

    [11]

    Raal FJ, Kallend D, Ray KK, et al. Inclisiran for the treatment of heterozygous familial hypercholesterolemia[J]. N Engl J Med, 2020, 382(16): 1520-1530. doi: 10.1056/NEJMoa1913805

    [12]

    Ray KK, Wright RS, Kallend D, et al. ORION-10 and ORION-11 Investigators. Two Phase 3 Trials of Inclisiran in Patients with Elevated LDL Cholesterol[J]. N Engl J Med, 2020, 382(16): 1507-1519. doi: 10.1056/NEJMoa1912387

    [13]

    Lavecchia A, Cerchia C. Recent advances in developing PCSK9 inhibitors for lipid-lowering therapy[J]. Future Med Chem, 2019, 11(5): 423-441. doi: 10.4155/fmc-2018-0294

    [14]

    Fitzgerald K, White S, Borodovsky A, et al. A highly durable RNAi therapeutic inhibitor of PCSK9[J]. N Engl J Med, 2017, 376(1): 41-51. doi: 10.1056/NEJMoa1609243

    [15]

    Ito MK. ISIS 301012 gene therapy for hypercholesterolemia: sense, antisense, or nonsense?[J]. Ann Pharmacother, 2007, 41(10): 1669-1678. doi: 10.1345/aph.1K065

    [16]

    Tsimikas S, Karwatowska-Prokopczuk E, Gouni-Berthold I, et al. Lipoprotein(a)reduction in persons with cardiovascular disease[J]. N Engl J Med, 2020, 382(3): 244-255. doi: 10.1056/NEJMoa1905239

    [17]

    Koren MJ, Moriarty PM, Neutel J, et al. Safety, tolerability and efficacy of single-dose Amg 890, a novel sirna Targeting Lp(a), in healthy subjects and subjects with elevated Lp(a)[J]. Circulation, 2020, 142(Suppl_3): A13951.

    [18]

    Ruscica M, Zimetti F, Adorni MP, et al. Pharmacological aspects of ANGPTL3 and ANGPTL4 inhibitors: New therapeutic approaches for the treatment of atherogenic dyslipidemia[J]. Pharmacol Res, 2020, 153: 104653. doi: 10.1016/j.phrs.2020.104653

    [19]

    Wong SC, Li Z, Given B, et al. Personalized medicine for dyslipidemias by RNA interference-mediated reductions in apolipoprotein C3 or angiopoietin-like protein 3[J]. J Clin Lipidol, 2019, 13(3): e15.

    [20]

    Graham MJ, Lee RG, Bell TA 3rd, et al. Antisense oligonucleotide inhibition of apolipoprotein C-Ⅲ reduces plasma triglycerides in rodents, nonhuman primates, and humans[J]. Circ Res, 2013, 112(11): 1479-1490. doi: 10.1161/CIRCRESAHA.111.300367

  • 加载中
计量
  • 文章访问数:  1557
  • PDF下载数:  336
  • 施引文献:  0
出版历程
收稿日期:  2022-08-12
刊出日期:  2022-09-13

目录