CTRP9与2型糖尿病相关动脉粥样硬化的研究进展

马雅楠, 金晓雪, 刘德敏, 等. CTRP9与2型糖尿病相关动脉粥样硬化的研究进展[J]. 临床心血管病杂志, 2022, 38(10): 833-837. doi: 10.13201/j.issn.1001-1439.2022.10.015
引用本文: 马雅楠, 金晓雪, 刘德敏, 等. CTRP9与2型糖尿病相关动脉粥样硬化的研究进展[J]. 临床心血管病杂志, 2022, 38(10): 833-837. doi: 10.13201/j.issn.1001-1439.2022.10.015
MA Ya'nan, JIN Xiaoxue, LIU Demin, et al. Research progress of CTRP9 and type 2 diabetes mellitus associated with atherosclerosis[J]. J Clin Cardiol, 2022, 38(10): 833-837. doi: 10.13201/j.issn.1001-1439.2022.10.015
Citation: MA Ya'nan, JIN Xiaoxue, LIU Demin, et al. Research progress of CTRP9 and type 2 diabetes mellitus associated with atherosclerosis[J]. J Clin Cardiol, 2022, 38(10): 833-837. doi: 10.13201/j.issn.1001-1439.2022.10.015

CTRP9与2型糖尿病相关动脉粥样硬化的研究进展

  • 基金项目:
    河北省自然科学基金精准医学联合基金重点项目(No:H2020206409);河北省自然科学基金资助项目(No:H2021206220)
详细信息

Research progress of CTRP9 and type 2 diabetes mellitus associated with atherosclerosis

More Information
  • 冠心病是2型糖尿病的主要并发症,也是2型糖尿病患者死亡的重要原因,延缓2型糖尿病患者动脉粥样硬化的进展成为提高人类生活质量的紧迫问题。C1q肿瘤坏死因子相关蛋白9(CTRP9)作为心血管保护因子,在延缓2型糖尿病相关动脉粥样硬化的进展中发挥什么作用,是目前学术界研究的热点。本综述总结了CTRP9在2型糖尿病相关动脉粥样硬化中作用的最新进展,重点介绍其在2型糖尿病相关动脉粥样硬中的作用机制,为预防及治疗糖尿病相关动脉粥样硬化提供新的思路及解决方法。
  • 加载中
  • [1]

    Shi L, Du X, Guo P, et al. Ascorbic acid supplementation in type 2 diabetes mellitus: A protocol for systematic review and meta-analysis[J]. Medicine (Baltimore), 2020, 99(45): e23125. doi: 10.1097/MD.0000000000023125

    [2]

    Yu XH, He LH, Gao JH, et al. Pregnancy-associated plasma protein-A in atherosclerosis: Molecular marker, mechanistic insight, and therapeutic target[J]. Atherosclerosis, 2018, 278: 250-258. doi: 10.1016/j.atherosclerosis.2018.10.004

    [3]

    Zuo A, Zhao X, Li T, et al. CTRP9 knockout exaggerates lipotoxicity in cardiac myocytes and high-fat diet-induced cardiac hypertrophy through inhibiting the LKB1/AMPK pathway[J]. J Cell Mol Med, 2020, 24(4): 2635-2647. doi: 10.1111/jcmm.14982

    [4]

    赵勤勤, 侯静波. CTRP9与急性冠脉综合征关系的研究进展[J]. 临床心血管病杂志, 2016, 32(2): 119-122. https://www.cnki.com.cn/Article/CJFDTOTAL-LCXB201602004.htm

    [5]

    Jin Q, Su H, Yang R, et al. C1q/TNF-related protein-9 ameliorates hypoxia-induced pulmonary hypertension by regulating secretion of endothelin-1 and nitric oxide mediated by AMPK in rats[J]. Sci Rep, 2021, 11(1): 11372. doi: 10.1038/s41598-021-90779-2

    [6]

    Yan Z, Cao X, Wang C, et al. C1q/tumor necrosis factor-related protein-3 improves microvascular endothelial function in diabetes through the AMPK/eNOS/NO· signaling pathway[J]. Biochem Pharmacol, 2022, 195: 114745. doi: 10.1016/j.bcp.2021.114745

    [7]

    Yang Y, Li Y, Ma Z, et al. A brief glimpse at CTRP3 and CTRP9 in lipid metabolism and cardiovascular protection[J]. Prog Lipid Res, 2016, 64: 170-177. doi: 10.1016/j.plipres.2016.10.001

    [8]

    Khaddaj Mallat R, Mathew John C, Kendrick DJ, et al. The vascular endothelium: A regulator of arterial tone and interface for the immune system[J]. Crit Rev Clin Lab Sci, 2017, 54(7-8): 458-470. doi: 10.1080/10408363.2017.1394267

    [9]

    Barthelmes J, Nägele MP, Ludovici V, et al. Endothelial dysfunction in cardiovascular disease and Flammer syndrome-similarities and differences[J]. EPMA J, 2017, 8(2): 99-109. doi: 10.1007/s13167-017-0099-1

    [10]

    Ito F, Sono Y, Ito T. Measurement and Clinical Significance of Lipid Peroxidation as a Biomarker of Oxidative Stress: Oxidative Stress in Diabetes, Atherosclerosis, and Chronic Inflammation[J]. Antioxidants (Basel), 2019, 8(3).

    [11]

    Zheng Q, Yuan Y, Yi W, et al. C1q/TNF-related proteins, a family of novel adipokines, induce vascular relaxation through the adiponectin receptor-1/AMPK/eNOS/nitric oxide signaling pathway[J]. Arterioscler Thromb Vasc Biol, 2011, 31(11): 2616-2623. doi: 10.1161/ATVBAHA.111.231050

    [12]

    Sun H, Zhu X, Zhou Y, et al. C1q/TNF-Related Protein-9 Ameliorates Ox-LDL-Induced Endothelial Dysfunction via PGC-1α/AMPK-Mediated Antioxidant Enzyme Induction[J]. Int J Mol Sci, 2017, 18(6).

    [13]

    Yu XH, Zhang DW, Zheng XL, et al. C1q tumor necrosis factor-related protein 9 in atherosclerosis: Mechanistic insights and therapeutic potential[J]. Atherosclerosis, 2018, 276: 109-116. doi: 10.1016/j.atherosclerosis.2018.07.022

    [14]

    Tonhajzerova I, Sekaninova N, Bona Olexova L, et al. Novel Insight into Neuroimmune Regulatory Mechanisms and Biomarkers Linking Major Depression and Vascular Diseases: The Dilemma Continues[J]. Int J Mol Sci, 2020, 21(7).

    [15]

    Cheng L, Li B, Chen X, et al. CTRP9 induces mitochondrial biogenesis and protects high glucose-induced endothelial oxidative damage via AdipoR1 -SIRT1- PGC-1α activation[J]. Biochem Biophys Res Commun, 2016, 477(4): 685-691. doi: 10.1016/j.bbrc.2016.06.120

    [16]

    Chew YC, Adhikary G, Wilson GM, et al. Protein kinase C (PKC) delta suppresses keratinocyte proliferation by increasing p21(Cip1) level by a KLF4 transcription factor-dependent mechanism[J]. J Biol Chem, 2011, 286(33): 28772-28782. doi: 10.1074/jbc.M110.205245

    [17]

    Torrance JB, Goldband S. Mathematical Connection between Short Telomere Induced Senescence Calculation and Mortality Rate Data[J]. Int J Mol Sci, 2020, 21(21).

    [18]

    Wang G, Han B, Zhang R, et al. Corrigendum: C1q/TNF-Related Protein 9 Attenuates Atherosclerosis by Inhibiting Hyperglycemia-Induced Endothelial Cell Senescence Through the AMPKα/KLF4 Signaling Pathway[J]. Front Pharmacol, 2021, 12: 812384. doi: 10.3389/fphar.2021.812384

    [19]

    Lee J, Yoo JH, Kim HS, et al. C1q/TNF-related protein-9 attenuates palmitic acid-induced endothelial cell senescence via increasing autophagy[J]. Mol Cell Endocrinol, 2021, 521: 111114. doi: 10.1016/j.mce.2020.111114

    [20]

    马雅楠, 刘德敏, 谷国强. 2型糖尿病与血管衰老研究进展[J]. 临床心血管病杂志, 2021, 37(9): 791-795. https://www.cnki.com.cn/Article/CJFDTOTAL-LCXB202109003.htm

    [21]

    Jung CH, Lee MJ, Kang YM, et al. C1q/TNF-related protein-9 inhibits cytokine-induced vascular inflammation and leukocyte adhesiveness via AMP-activated protein kinase activation in endothelial cells[J]. Mol Cell Endocrinol, 2016, 419: 235-243. doi: 10.1016/j.mce.2015.10.023

    [22]

    张如卉, 李志樑, 付强, 等. 冠心病患者血浆中单核细胞趋化蛋白-1的意义[J]. 临床心血管病杂志, 2012, 28(5): 367-370. https://www.cnki.com.cn/Article/CJFDTOTAL-LCXB201205013.htm

    [23]

    Zhang P, Huang C, Li J, et al. Globular CTRP9 inhibits oxLDL-induced inflammatory response in RAW 264.7 macrophages via AMPK activation[J]. Mol Cell Biochem, 2016, 417(1-2): 67-74. doi: 10.1007/s11010-016-2714-1

    [24]

    Hoseini Z, Sepahvand F, Rashidi B, et al. NLRP3 inflammasome: Its regulation and involvement in atherosclerosis[J]. J Cell Physiol, 2018, 233(3): 2116-2132. doi: 10.1002/jcp.25930

    [25]

    Zhang H, Gong X, Ni S, et al. C1q/TNF-related protein-9 attenuates atherosclerosis through AMPK-NLRP3 inflammasome singling pathway[J]. Int Immunopharmacol, 2019, 77: 105934. doi: 10.1016/j.intimp.2019.105934

    [26]

    Yashima H, Terasaki M, Sotokawauchi A, et al. AGE-RAGE Axis Stimulates Oxidized LDL Uptake into Macrophages through Cyclin-Dependent Kinase 5-CD36 Pathway via Oxidative Stress Generation[J]. Int J Mol Sci, 2020, 21(23).

    [27]

    Jones JG. Hepatic glucose and lipid metabolism[J]. Diabetologia, 2016, 59(6): 1098-1103. doi: 10.1007/s00125-016-3940-5

    [28]

    Park SY, Kim D, Kee SH. Metformin-activated AMPK regulates β-catenin to reduce cell proliferation in colon carcinoma RKO cells[J]. Oncol Lett, 2019, 17(3): 2695-2702.

    [29]

    Zhang L, Liu Q, Zhang H, et al. C1q/TNF-Related Protein 9 Inhibits THP-1 Macrophage Foam Cell Formation by Enhancing Autophagy[J]. J Cardiovasc Pharmacol, 2018, 72(4): 167-175. doi: 10.1097/FJC.0000000000000612

    [30]

    Lei S, Chen J, Song C, et al. CTRP9 alleviates foam cells apoptosis by enhancing cholesterol efflux[J]. Mol Cell Endocrinol, 2021, 522: 111138.

    [31]

    Li Y, Guo X, Xue G, et al. RNA Splicing of the Abi1 Gene by MBNL1 contributes to macrophage-like phenotype modulation of vascular smooth muscle cell during atherogenesis[J]. Cell Prolif, 2021, 54(5): e13023.

    [32]

    Feil S, Fehrenbacher B, Lukowski R, et al. Transdifferentiation of vascular smooth muscle cells to macrophage-like cells during atherogenesis[J]. Circ Res, 2014, 115(7): 662-667.

    [33]

    Li YX, Run L, Shi T, et al. CTRP9 regulates hypoxia-mediated human pulmonary artery smooth muscle cell proliferation, apoptosis and migration via TGF-β1/ERK1/2 signaling pathway[J]. Biochem Biophys Res Commun, 2017, 490(4): 1319-1325.

    [34]

    Uemura Y, Shibata R, Ohashi K, et al. Adipose-derived factor CTRP9 attenuates vascular smooth muscle cell proliferation and neointimal formation[J]. FASEB J, 2013, 27(1): 25-33.

    [35]

    Kearney MT, Duncan ER, Kahn M, et al. Insulin resistance and endothelial cell dysfunction: studies in mammalian models[J]. Exp Physiol, 2008, 93(1): 158-163.

    [36]

    Takeda Y, Matoba K, Sekiguchi K, et al. Endothelial Dysfunction in Diabetes[J]. Biomedicines, 2020, 8(7).

    [37]

    Alipourfard I, Bakhtiyari S, Gheysarzadeh A, et al. The Key Role of Akt Protein Kinase in Metabolic-Inflammatory Pathways Cross-Talk: TNF-α Down-Regulation and Improving of Insulin Resistance in HepG2 Cell Line[J]. Curr Mol Med, 2021, 21(3): 257-264.

    [38]

    Saleh J, Al-Maqbali M, Abdel-Hadi D. Role of Complement and Complement-Related Adipokines in Regulation of Energy Metabolism and Fat Storage[J]. Compr Physiol, 2019, 9(4): 1411-1429.

    [39]

    Moradi N, Fadaei R, Emamgholipour S, et al. Association of circulating CTRP9 with soluble adhesion molecules and inflammatory markers in patients with type 2 diabetes mellitus and coronary artery disease[J]. PLoS One, 2018, 13(1): e0192159.

    [40]

    Jung CH, Lee MJ, Kang YM, et al. Association of serum C1q/TNF-related protein-9 concentration with arterial stiffness in subjects with type 2 diabetes[J]. J Clin Endocrinol Metab, 2014, 99(12): E2477-2484.

  • 加载中
计量
  • 文章访问数:  1034
  • PDF下载数:  541
  • 施引文献:  0
出版历程
收稿日期:  2022-02-08
刊出日期:  2022-10-13

目录