生物靶向治疗高血压的研究进展

秦萍, 廖玉华, 邱志华. 生物靶向治疗高血压的研究进展[J]. 临床心血管病杂志, 2023, 39(1): 6-10. doi: 10.13201/j.issn.1001-1439.2023.01.002
引用本文: 秦萍, 廖玉华, 邱志华. 生物靶向治疗高血压的研究进展[J]. 临床心血管病杂志, 2023, 39(1): 6-10. doi: 10.13201/j.issn.1001-1439.2023.01.002
QIN Ping, LIAO Yuhua, QIU Zhihua. Progress of bio-targeted treatment for hypertension[J]. J Clin Cardiol, 2023, 39(1): 6-10. doi: 10.13201/j.issn.1001-1439.2023.01.002
Citation: QIN Ping, LIAO Yuhua, QIU Zhihua. Progress of bio-targeted treatment for hypertension[J]. J Clin Cardiol, 2023, 39(1): 6-10. doi: 10.13201/j.issn.1001-1439.2023.01.002

生物靶向治疗高血压的研究进展

  • 基金项目:
    国家自然科学基金面上项目(No:82070522、81974055)
详细信息

Progress of bio-targeted treatment for hypertension

More Information
  • 针对高血压这一主要心血管病危险因素进行有效防治,可以降低心血管病死亡风险。然而,中国高血压的知晓率、治疗率和控制率均处于较低水平,尤其是控制率极低,心血管病防治面临巨大挑战和困境。为进一步探索高血压安全有效的治疗方法,改善治疗依从性,本团队在高血压治疗性疫苗领域多年耕耘,使本研究团队对这一治疗手段的应用前景充满希望。本文将重点介绍高血压生物靶向治疗领域尤其是治疗性疫苗的研究进展,希望以此推动生物靶向治疗高血压领域的基础研究与临床转化。
  • 加载中
  • 图 1  ATRQβ-001疫苗的结构及多效性

    Figure 1.  The structure and pleiotropy of ATRQβ-001 vaccine

    表 1  生物靶向治疗高血压的药物

    Table 1.  Drugs of bio-targeted treatment for hypertension

    高血压靶点 疫苗形式 血压降低水平 发表年份
    肾素 全抗原 在高血压狗和高血压大鼠中观察到降压作用 1958
    全抗原 降低狨猴收缩压38 mmHg,但导致肾脏免疫性损害 1987
    KLH偶联疫苗 降低自发性高血压大鼠收缩压15 mmHg 2013
    AGT 干扰RNA药物(zilebesiran) 24 h动态收缩压降低超过15 mmHg 2020
    ASO(IONIS-AGT-LRx) 单药治疗血压平均下降8/1 mmHg,联合用药血压平均下降12/6 mmHg 2021
    AngⅠ KLH偶联疫苗(PMD3117) 临床试验未见血压降低 2003
    AngⅡ Qβ VLP偶联疫苗(CYT006-Qβ) 降低自发性高血压大鼠血压(收缩压降低21 mmHg),临床试验大剂量组血压降低9/4 mmHg 2007
    KLH偶联疫苗 降低高血压动物血压(具体降幅未知) 2013
    HAV载体嵌合疫苗 降低自发性高血压大鼠血压23/12 mmHg 2013
    DNA疫苗(AGMG0201) 降低自发性高血压大鼠血压,Ⅰ/Ⅱa期临床试验正在进行中 2015
    AT1R TT偶联疫苗 降低自发性高血压大鼠收缩压17 mmHg 2006
    KLH偶联疫苗 降低自发性高血压大鼠血压(未指出具体血压降幅) 2012
    Qβ VLP偶联疫苗(ATRQβ-001) 降低高血压模型动物收缩压(小鼠降低35 mmHg,大鼠降低19 mmHg) 2013
    α1DR Qβ VLP偶联疫苗(ADRQβ-004) 降低自发性高血压大鼠收缩压18 mmHg 2019
    L型钙通道/AT1R二价疫苗 HBcAg载体嵌合疫苗 降低高血压动物血压(收缩压降低25 mmHg) 2019
    HAV:甲型肝炎病毒;TT:破伤风类毒素;HbcAg:乙肝核心抗原。
    下载: 导出CSV
  • [1]

    中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2021概要[J]. 中国循环杂志, 2022, 37(6): 553-578. doi: 10.3969/j.issn.1000-3614.2022.06.001

    [2]

    邱志华, 胡夏君, 周彦兆, 等. 心血管病治疗性疫苗的进展与展望[J]. 中国科学·生命科学, 2022, 52(5): 781-794. https://www.cnki.com.cn/Article/CJFDTOTAL-JCXK202205018.htm

    [3]

    Li C, Yan X, Wu D, et al. Vaccine Targeted Alpha 1D-Adrenergic Receptor for Hypertension[J]. Hypertension, 2019, 74(6): 1551-1562. doi: 10.1161/HYPERTENSIONAHA.119.13700

    [4]

    Wu H, Wang Y, Wang G, et al. A bivalent antihypertensive vaccine targeting L-type calcium channels and angiotensin AT1 receptors[J]. Br J Pharmacol, 2020, 177(2): 402-419. doi: 10.1111/bph.14875

    [5]

    Nakagami H, Ishihama T, Daikyoji Y, et al. Brief report on a phase study to assess the safety, tolerability, and immune response of AGMG0201 in patients with essential hypertension[J]. Hypertens Res, 2022, 45(1): 61-65. doi: 10.1038/s41440-021-00755-6

    [6]

    Huang S, Taubel J, Fiore G, et al. Abstract 14387: Dose-related reductions in blood pressure with a rna interference(rnai)therapeutic targeting angiotensinogen in hypertensive patients: Interim results from a first-in-human phase 1 study of aln-agt01[J]. Circulation, 2020, 142: A14387.

    [7]

    Ranasinghe P, Addison ML, Webb DJ. Small Interfering RNA Therapeutics in Hypertension: A Viewpoint on Vasopressor and Vasopressor-Sparing Strategies for Counteracting Blood Pressure Lowering by Angiotensinogen-Targeting Small Interfering RNA[J]. J Am Heart Assoc, 2022, 11(20): e027694. doi: 10.1161/JAHA.122.027694

    [8]

    Morgan ES, Tami Y, Hu K, et al. Antisense Inhibition of Angiotensinogen With IONIS-AGT-LRx: Results of Phase 1 and Phase 2 Studies[J]. JACC Basic Transl Sci, 2021, 6(6): 485-496. doi: 10.1016/j.jacbts.2021.04.004

    [9]

    Zhang H, Liao M, Cao M, et al. ATRQbeta-001 Vaccine Prevents Experimental Abdominal Aortic Aneurysms[J]. J Am Heart Assoc, 2019, 8(18): e012341. doi: 10.1161/JAHA.119.012341

    [10]

    Pan Y, Zhou Z, Zhang H, et al. The ATRQbeta-001 vaccine improves cardiac function and prevents postinfarction cardiac remodeling in mice[J]. Hypertens Res, 2019, 42(3): 329-340. doi: 10.1038/s41440-018-0185-3

    [11]

    Zheng J, Ding J, Liao M, et al. Immunotherapy against angiotensin Ⅱ receptor ameliorated insulin resistance in a leptin receptor-dependent manner[J]. FASEB J, 2021, 35(1): e21157.

    [12]

    Wang Y, Fan Z, Xu C, et al. Anti-ATR001 monoclonal antibody ameliorates atherosclerosis through beta-arrestin2 pathway[J]. Biochem Biophys Res Commun, 2021, 544: 1-7. doi: 10.1016/j.bbrc.2021.01.054

    [13]

    Hu X, Chen X, Shi X, et al. Bionanoparticle-Based Delivery in Antihypertensive Vaccine Mediates DC Activation through Lipid-Raft Reorganization[J]. Adv Funct Mater, 2020, 2000346.

    [14]

    Uijl E, Ye D, Ren L, et al. Conventional Vasopressor and Vasopressor-Sparing Strategies to Counteract the Blood Pressure-Lowering Effect of Small Interfering RNA Targeting Angiotensinogen[J]. J Am Heart Assoc, 2022, 11(15): e026426. doi: 10.1161/JAHA.122.026426

  • 加载中

(1)

(1)

计量
  • 文章访问数:  1251
  • PDF下载数:  365
  • 施引文献:  0
出版历程
收稿日期:  2022-11-08
刊出日期:  2023-01-13

目录