冠状动脉内生物可降解支架研究现状

陈思佟, 王悦喜, 刘晓宇. 冠状动脉内生物可降解支架研究现状[J]. 临床心血管病杂志, 2023, 39(1): 68-75. doi: 10.13201/j.issn.1001-1439.2023.01.013
引用本文: 陈思佟, 王悦喜, 刘晓宇. 冠状动脉内生物可降解支架研究现状[J]. 临床心血管病杂志, 2023, 39(1): 68-75. doi: 10.13201/j.issn.1001-1439.2023.01.013
CHEN Sitong, WANG Yuexi, LIU Xiaoyu. Research status of coronary artery bioresorbable vascular scaffold[J]. J Clin Cardiol, 2023, 39(1): 68-75. doi: 10.13201/j.issn.1001-1439.2023.01.013
Citation: CHEN Sitong, WANG Yuexi, LIU Xiaoyu. Research status of coronary artery bioresorbable vascular scaffold[J]. J Clin Cardiol, 2023, 39(1): 68-75. doi: 10.13201/j.issn.1001-1439.2023.01.013

冠状动脉内生物可降解支架研究现状

  • 基金项目:
    内蒙古自治区高等学校科学研究项目(No:NJZZ20132)
详细信息

Research status of coronary artery bioresorbable vascular scaffold

More Information
  • 冠状动脉(冠脉)内药物洗脱支架的植入是治疗冠脉疾病的主要手段之一,该方法虽然显著减少了支架内狭窄及支架内血栓的发生率,但弊端是心脏永久保留了金属异物,同时涂层聚合物还可能导致血管的慢性炎症、再狭窄、新生内膜的粥样硬化以及晚期管腔丢失。为克服药物洗脱支架治疗冠脉疾病的局限性,出现了一种新的技术——生物可降解支架。然而在使用生物可降解支架时,支架内血栓的高发生率是一个不可忽视的问题,究其原因,可能与未选择合适患者、未进行PSP策略(预扩张、支架植入、后扩张)以及支架材料和生产工艺仍需改进相关。但这并不能阻挡生物可降解支架引发冠脉介入治疗的第4次革命。同时,生物可降解支架具有其独特的优势,如提供靶病变适当时间的机械支撑后恢复冠脉生理性的功能。本综述主要介绍生物可降解支架的发展历程、现状以及目前的困境。
  • 加载中
  • 表 1  冠脉内生物可降解支架循证医学证据

    Table 1.  Evidence-based medicine of coronary artery bioresorbable vascular scaffold

    研究 开始年份 随访时间/年 BVS支架(对照组支架) 入选患者数量/ 病变数量 主要终点及结果 支架内血栓
    Igaki-Tamai stents研究[14] 1998—2000 10 Igaki-Tamai stents 50/63 TLR(TVR)的累积发生率:1年时16%(16%),5年时18%(22%),10年时28%(38%) 2例
    ABSORB Ⅱ研究[17] 2011—2013 3 Abbott BVS (XIENCE支架) 335(166)/ 364(182) 第1个主要终点:血管舒缩反应性无差异;第2个主要终点:LLL率BVS组大于Xience组 BVS组不劣于Xience组
    ABSORB Ⅲ研究[22] 2014 5 Abbott BVS (XIENCE支架) 1322(686)/ 1385(713) 1年时TLF:BVS组不劣于Xience组;2~5年时TLF:BVS组显著高于Xience组 BVS组劣于Xience组
    ABSORB China研究[32] 2014 3 Abbott BVS (XIENCE支架) 241(239)/ 251(252) 3年时TLF:BVS组不劣于Xience组 2~3年内0例
    BIOSOLVE-Ⅱ和-Ⅲ研究[23] 2013—2015 3 Magmaris 184/189 TLF:6.3%;心脏性死亡:2.3%;TVMI:0.6%;ID-TLR:3.4% 0例
    BIOSOLVE-Ⅳ研究[24] 2016 1 Magmaris 1075/1121 1年时TLF:4.3% 5例
    XINSORB研究[28] 2013—2014 5 XINSORB BVS 30/30 5年时TLF:13.3% 1例
    XINSORB RCT研究[29] 2014—2015 4 XINSORB BVS (TIVOLI SES) 200(195)/ 210(216) 两组在TLF、PoCE、MACE、ID-TLR、TVMI、ID-TVR的差异均无统计学意义 BVS组2例
    FUTURE-Ⅰ研究[6] 2016 4 Firesorb BVS 45/45 PoCE发生率为4.4% 0例
    FUTURE-ⅡRCT研究[30] 2017—2019 1 Firesorb BVS (EES) 215(218)/ 221(226) 1年后造影显示节段内LLL不劣于EES 0例
    NeoVas客观绩效研究[5] 2014—2016 1 NeoVas BVS 1103/1170 1年时TLF发生率为3%,显著低于8.5%的绩效目标 5例
    NeoVas RCT研究[31] 2014—2015 3 NeoVas BVS (EES) 278(282)/ 278(283) 3年时TLF:BVS组不劣于Xience组 BVS组不劣于EES组
    下载: 导出CSV
  • [1]

    Lin W, Qin L, Qi H, et al. Long-term in vivo corrosion behavior, biocompatibility and bioresorption mechanism of a bioresorbable nitrided iron scaffold[J]. Acta Biomater, 2017, 54: 454-468. doi: 10.1016/j.actbio.2017.03.020

    [2]

    Jinnouchi H, Torii S, Sakamoto A, et al. Fully bioresorbable vascular scaffolds: lessons learned and future directions[J]. Nat Rev Cardiol, 2019, 16(5): 286-304. doi: 10.1038/s41569-018-0124-7

    [3]

    Serruys PW, Ormiston J, van Geuns RJ, et al. A Polylactide Bioresorbable Scaffold Eluting Everolimus for Treatment of Coronary Stenosis: 5-Year Follow-Up[J]. J Am Coll Cardiol, 2016, 67(7): 766-776. doi: 10.1016/j.jacc.2015.11.060

    [4]

    Yin T, Du R, Wang Y, et al. Two-stage degradation and novel functional endothelium characteristics of a 3-D printed bioresorbable scaffold[J]. Bioact Mater, 2022, 10: 378-396. doi: 10.1016/j.bioactmat.2021.08.020

    [5]

    Xu K, Fu G, Xu B, et al. Safety and efficacy of the novel sirolimus-eluting bioresorbable scaffold for the treatment of de novo coronary artery disease: One-year results from a prospective patient-level pooled analysis of NeoVas trials[J]. Catheter Cardiovasc Interv, 2019, 93(S1): 832-838. doi: 10.1002/ccd.28067

    [6]

    Li CJ, Xu B, Song L, et al. The safety and efficacy of Firesorb bioresorbable scaffold in first-in-man study for coronary artery disease: the four-year outcomes[J]. Zhonghua Xin Xue Guan Bing Za Zhi, 2021, 49(2): 128-135.

    [7]

    Haude M, Ince H, Toelg R, et al. Safety and performance of the second-generation drug-eluting absorbable metal scaffold(DREAMS 2G)in patients with de novo coronary lesions: three-year clinical results and angiographic findings of the BIOSOLVE-Ⅱfirst-in-man trial[J]. EuroIntervention, 2020, 15(15): e1375-e1382. doi: 10.4244/EIJ-D-18-01000

    [8]

    Liang X, Gao J, Xu W, et al. Structural mechanics of 3D-printed poly(lactic acid)scaffolds with tetragonal, hexagonal and wheel-like designs[J]. Biofabrication, 2019, 11(3): 035009. doi: 10.1088/1758-5090/ab0f59

    [9]

    Liu Y, Zheng YF, Chen XH, et al. Fundamental Theory of Biodegradable Metals-Definition, Criteria, and Design[J]. Adv Funct Mater, 2019, 29(18).

    [10]

    Menze R, Wittchow E. In vitro and in vivo evaluation of a novel bioresorbable magnesium scaffold with different surface modifications[J]. J Biomed Mater Res B Appl Biomater, 2021, 109(9): 1292-1302. doi: 10.1002/jbm.b.34790

    [11]

    Li X, Zhang W, Lin W, et al. Long-Term Efficacy of Biodegradable Metal-Polymer Composite Stents After the First and the Second Implantations into Porcine Coronary Arteries[J]. ACS Appl Mater Interfaces, 2020, 12(13): 15703-15715. doi: 10.1021/acsami.0c00971

    [12]

    Wang Y J, Venezuela, and M Dargusch. Biodegradable shape memory alloys: Progress and prospects[J]. Biomaterials, 2021, 279: p. 121215.

    [13]

    Levy G K, J Goldman, and E Aghion. The Prospects of Zinc as a Structural Material for Biodegradable Implants-A Review Paper[J]. Metals, 2017.7(10).

    [14]

    Nishio S, Kosuga K, Igaki K, et al. Long-Term(>10 Years)clinical outcomes of first-in-human biodegradable poly-l-lactic acid coronary stents: Igaki-Tamai stents[J]. Circulation, 2012, 125(19): 2343-2353. doi: 10.1161/CIRCULATIONAHA.110.000901

    [15]

    Räber L, Ueki Y. Bioresorbable Scaffolds: Unfulfilled Prophecies[J]. Circulation, 2019, 140(23): 1917-1920. doi: 10.1161/CIRCULATIONAHA.119.043773

    [16]

    Tarantini G, Mojoli M, Masiero G, et al. Clinical outcomes of overlapping versus non-overlapping everolimus-eluting absorb bioresorbable vascular scaffolds: An analysis from the multicentre prospective RAI registry(ClinicalTrials. gov identifier: NCT02298413)[J]. Catheter Cardiovasc Interv, 2018, 91(1): E1-E16. doi: 10.1002/ccd.27095

    [17]

    Serruys PW, Chevalier B, Sotomi Y, et al. Comparison of an everolimus-eluting bioresorbable scaffold with an everolimus-eluting metallic stent for the treatment of coronary artery stenosis(ABSORB Ⅱ): a 3 year, randomised, controlled, single-blind, multicentre clinical trial[J]. Lancet, 2016, 388(10059): 2479-2491. doi: 10.1016/S0140-6736(16)32050-5

    [18]

    Chang CC, Onuma Y, Achenbach S, et al. Absorb Bioresorbable Scaffold Versus Xience Metallic Stent for Prevention of Restenosis Following Percutaneous Coronary Intervention in Patients at High Risk of Restenosis: Rationale and Design of the COMPARE ABSORB Trial[J]. Cardiovasc Revasc Med, 2019, 20(7): 577-582. doi: 10.1016/j.carrev.2019.04.013

    [19]

    Stone GW, Ellis SG, Gori T, et al. Blinded outcomes and angina assessment of coronary bioresorbable scaffolds: 30-day and 1-year results from the ABSORB Ⅳ randomised trial[J]. Lancet, 2018, 392(10157): 1530-1540. doi: 10.1016/S0140-6736(18)32283-9

    [20]

    Felix CM, van den Berg VJ, Hoeks SE, et al. Mid-term outcomes of the Absorb BVS versus second-generation DES: A systematic review and meta-analysis[J]. PLoS One, 2018, 13(5): e0197119. doi: 10.1371/journal.pone.0197119

    [21]

    Kerkmeijer LSM, Renkens MPL, Tijssen RYG, et al. Long-term clinical outcomes of everolimus-eluting bioresorbable scaffolds versus everolimus-eluting stents: final five-year results of the AIDA randomised clinical trial[J]. Euro Intervention, 2022, 17(16): 1340-1347.

    [22]

    Kereiakes DJ, Ellis SG, Metzger DC, et al. Clinical Outcomes Before and After Complete Everolimus-Eluting Bioresorbable Scaffold Resorption: Five-Year Follow-Up From the ABSORB Ⅲ Trial[J]. Circulation, 2019, 140(23): 1895-1903. doi: 10.1161/CIRCULATIONAHA.119.042584

    [23]

    Haude M, Ince H, Kische S, et al. Sustained Safety and Performance of the Second-Generation Sirolimus-Eluting Absorbable Metal Scaffold: Pooled Outcomes of the BIOSOLVE-Ⅱ and-Ⅲ Trials at 3 Years[J]. Cardiovasc Revasc Med, 2020, 21(9): 1150-1154. doi: 10.1016/j.carrev.2020.04.006

    [24]

    Verheye S, Wlodarczak A, Montorsi P, et al. BIOSOLVE-Ⅳ-registry: Safety and performance of the Magmaris scaffold: 12-month outcomes of the first cohort of 1, 075 patients[J]. Catheter Cardiovasc Interv, 2021, 98(1): E1-E8. doi: 10.1002/ccd.29524

    [25]

    Neumann FJ, Sousa-Uva M, AhlssonA, et al. 2018 ESC/EACTS Guidelines on myocardial revascularization[J]. Eur Heart J, 2019, 40(2): 87-165. doi: 10.1093/eurheartj/ehy394

    [26]

    Byrne RA, Stefanini GG, Capodanno D, et al. Report of an ESC-EAPCI Task Force on the evaluation and use of bioresorbable scaffolds for percutaneous coronary intervention: executive summary[J]. EuroIntervention, 2018, 13(13): 1574-1586. doi: 10.4244/EIJ20170912-01

    [27]

    Galli S, Testa L, Montorsi P, et al. SICI-GISE Position Document on the Use of the Magmaris Resorbable Magnesium Scaffold in Clinical Practice[J]. Cardiovasc Revasc Med, 2022, 34: 11-16. doi: 10.1016/j.carrev.2021.02.003

    [28]

    Wu Y, Yin J, Chen J, et al. Final report of the 5-year clinical outcomes of the XINSORB bioresorbable sirolimus-eluting scaffold in the treatment of single de novo coronary lesions in a first-in-human study[J]. Ann Transl Med, 2020, 8(18): 1162. doi: 10.21037/atm-20-5668

    [29]

    吴轶喆, 殷嘉晟, 葛雷, 等. XINSORB生物可吸收西罗莫司洗脱支架治疗原位冠状动脉狭窄病变随机对照研究4年临床结果[J]. 中国介入心脏病学杂志, 2020, 28(9): 493-499. doi: 10.3969/j.issn.1004-8812.2020.09.004

    [30]

    Song L, Xu B, Chen Y, et al. Thinner Strut Sirolimus-Eluting BRS Versus EES in Patients With Coronary Artery Disease: FUTURE-Ⅱ Trial[J]. JACC Cardiovasc Interv, 2021, 14(13): 1450-1462. doi: 10.1016/j.jcin.2021.04.048

    [31]

    Han Y, Xu B, Fu G, et al. A Randomized Trial Comparing the NeoVas Sirolimus-Eluting Bioresorbable Scaffold and Metallic Everolimus-Eluting Stents[J]. JACC Cardiovasc Interv, 2018, 11(3): 260-272. doi: 10.1016/j.jcin.2017.09.037

    [32]

    Xu B, Yang Y, Han Y, et al. Comparison of everolimus-eluting bioresorbable vascular scaffolds and metallic stents: three-year clinical outcomes from the ABSORB China randomised trial[J]. EuroIntervention, 2018, 14(5): e554-e561. doi: 10.4244/EIJ-D-17-00796

    [33]

    Ali ZA, Gao R, Kimura T, et al. Three-Year Outcomes With the Absorb Bioresorbable Scaffold: Individual-Patient-Data Meta-Analysis From the ABSORB Randomized Trials[J]. Circulation, 2018, 137(5): 464-479. doi: 10.1161/CIRCULATIONAHA.117.031843

    [34]

    Colombo A, Ruparelia N. Who Is Thrombogenic: The Scaffold or the Doctor? Back to the Future![J]. JACC Cardiovasc Interv, 2016, 9(1): 25-27. doi: 10.1016/j.jcin.2015.09.021

    [35]

    Costantini CR, Denk MA, De Macedo RM, et al. Absorb bioresorbable vascular scaffold outcomes following implantation with routine intravascular imaging guidance[J]. Catheter Cardiovasc Interv, 2021, 97(1): 48-55. doi: 10.1002/ccd.28699

    [36]

    Wiebe J, Hofmann FJ, West N, et al. Outcomes of 10, 312 patients treated with everolimus-eluting bioresorbable scaffolds during daily clinical practice-results from the European Absorb Consortium[J]. Catheter Cardiovasc Interv, 2022, 99(3): 533-540. doi: 10.1002/ccd.29932

    [37]

    Sorrentino S, Giustino G, Mehran R, et al. Everolimus-Eluting Bioresorbable Scaffolds Versus Everolimus-Eluting Metallic Stents[J]. J Am Coll Cardiol, 2017, 69(25): 3055-3066. doi: 10.1016/j.jacc.2017.04.011

    [38]

    Fiuza C, Polak-Kraśna K, Antonini L, et al. An experimental investigation into the physical, thermal and mechanical degradation of a polymeric bioresorbable scaffold[J]. J Mech Behav Biomed Mater, 2022, 125: 104955. doi: 10.1016/j.jmbbm.2021.104955

    [39]

    Otsuka F, Pacheco E, Perkins LE, et al. Long-term safety of an everolimus-eluting bioresorbable vascular scaffold and the cobalt-chromium XIENCE V stent in a porcine coronary artery model[J]. Circ Cardiovasc Interv, 2014, 7(3): 330-342. doi: 10.1161/CIRCINTERVENTIONS.113.000990

    [40]

    Antuña P, Cuesta J, García-Guimaraes M, et al. Treatment of In-Stent Restenosis: When the Stent Is No Longer There[J]. JACC Cardiovasc Interv, 2020, 13(7): e53-e55. doi: 10.1016/j.jcin.2019.10.032

    [41]

    Cuesta J, Antuña P, Bastante T, et al. Late structural discontinuity after bioresorbable vascular scaffold implantation in patients with in-stent restenosis[J]. EuroIntervention, 2021, 16(13): 1104-1105. doi: 10.4244/EIJ-D-19-00063

    [42]

    Ortega-Paz L, Brugaletta S, Gomez-Lara J, et al. Target lesion revascularisation of bioresorbable metal scaffolds: a case series study and literature review[J]. EuroIntervention, 2021, 16(13): 1100-1103. doi: 10.4244/EIJ-D-19-00421

    [43]

    Alfonso F, Cuesta J, Ojeda S, et al. Procedural Results and One-Year Clinical Outcomes of Treatment of Bioresorbable Vascular Scaffolds Restenosis(from the RIBS VⅡ Prospective Study)[J]. Am J Cardiol, 2022, 162: 31-40. doi: 10.1016/j.amjcard.2021.09.027

    [44]

    Dos Santos L, S.R. Bertoli, R.A. Ávila, et al. Iron overload, oxidative stress and vascular dysfunction: Evidences from clinical studies and animal models[J]. Biochim Biophys Acta Gen Subj, 2022, 1866(9): 130172. doi: 10.1016/j.bbagen.2022.130172

    [45]

    Amukarimi S, Mozafari M. Biodegradable magnesium-based biomaterials: An overview of challenges and opportunities[J]. MedComm, 2021, 2(2): 123-144. doi: 10.1002/mco2.59

    [46]

    Joner M, Ruppelt P, Zumstein P, et al. Preclinical evaluation of degradation kinetics and elemental mapping of first-and second-generation bioresorbable magnesium scaffolds[J]. EuroIntervention, 2018, 14(9): e1040-e1048. doi: 10.4244/EIJ-D-17-00708

    [47]

    Cubero-Gallego H, Vandeloo B, Gomez-Lara J, et al. Early Collapse of a Magnesium Bioresorbable Scaffold[J]. JACC Cardiovasc Interv, 2017, 10(18): e171-e172. doi: 10.1016/j.jcin.2017.07.037

    [48]

    Toong D, Toh HW, Ng J, et al. Bioresorbable Polymeric Scaffold in Cardiovascular Applications[J]. Int J Mol Sci, 2020, 21(10).

    [49]

    Bangalore S. Response by Bangalore to Letter Regarding Article, "Newer-Generation Ultrathin Strut Drug-Eluting Stents Versus Older Second-Generation Thicker Strut Drug-Eluting Stents for Coronary Artery Disease: Meta-Analysis of Randomized Trials"[J]. Circulation, 2019, 139(17): 2083-2084. doi: 10.1161/CIRCULATIONAHA.119.039684

    [50]

    Zheng JF, Qiu H, Tian Y, et al. Preclinical Evaluation of a Novel Sirolimus-Eluting Iron Bioresorbable Coronary Scaffold in Porcine Coronary Artery at 6 Months[J]. JACC Cardiovasc Interv, 2019, 12(3): 245-255. doi: 10.1016/j.jcin.2018.10.020

    [51]

    Stone GW, Kimura T, Gao R, et al. Time-Varying Outcomes With the Absorb Bioresorbable Vascular Scaffold During 5-Year Follow-up: A Systematic Meta-analysis and Individual Patient Data Pooled Study[J]. JAMA Cardiol, 2019, 4(12): 1261-1269. doi: 10.1001/jamacardio.2019.4101

    [52]

    Sotomi Y, Suwannasom P, Serruys PW, et al. Possible mechanical causes of scaffold thrombosis: insights from case reports with intracoronary imaging[J]. EuroIntervention, 2017, 12(14): 1747-1756. doi: 10.4244/EIJ-D-16-00471

    [53]

    Ali ZA, Karimi Galougahi K, Shlofmitz R, et al. Imaging-guided pre-dilatation, stenting, post-dilatation: a protocolized approach highlighting the importance of intravascular imaging for implantation of bioresorbable scaffolds[J]. Expert Rev Cardiovasc Ther, 2018, 16(6): 431-440. doi: 10.1080/14779072.2018.1473034

    [54]

    Suwannasom P, Sotomi Y, Ishibashi Y, et al. The Impact of Post-Procedural Asymmetry, Expansion, and Eccentricity of Bioresorbable Everolimus-Eluting Scaffold and Metallic Everolimus-Eluting Stent on Clinical Outcomes in the ABSORBⅡTrial[J]. JACC Cardiovasc Interv, 2016, 9(12): 1231-1242. doi: 10.1016/j.jcin.2016.03.027

    [55]

    Yamaji K, Ueki Y, Souteyrand G, et al. Mechanisms of Very Late Bioresorbable Scaffold Thrombosis: The INVEST Registry[J]. J Am Coll Cardiol, 2017, 70(19): 2330-2344. doi: 10.1016/j.jacc.2017.09.014

    [56]

    曾秋棠, 程翔, 彭昱东. 冠状动脉功能学和腔内影像学评价进展[J]. 临床心血管病杂志, 2021.37(5): 398-401. https://www.cnki.com.cn/Article/CJFDTOTAL-LCXB202105002.htm

    [57]

    张婷婷, 礼兆悦, 涂应锋. 光学相干断层成像技术在冠状动脉支架失败中的研究进展[J]. 临床心血管病杂志, 2021, 37(12): 1157-1161. https://www.cnki.com.cn/Article/CJFDTOTAL-LCXB202112018.htm

    [58]

    Albani S, Giannini F, Mitomo S, et al. Bioresorbable Vascular Scaffold With Optimized Implantation Technique: Long-Term Outcomes From a Single-Center Experience[J]. J Invasive Cardiol, 2021, 33(2): E115-E122.

  • 加载中

(1)

计量
  • 文章访问数:  2491
  • PDF下载数:  1265
  • 施引文献:  0
出版历程
收稿日期:  2022-02-26
刊出日期:  2023-01-13

目录