Research progress of polygenic risk score in the risk assessment of coronary heart disease
-
摘要: 冠心病的发病受多种环境与遗传因素的影响。多基因风险评分作为研究遗传易感性与复杂疾病之间关系的新兴方法,通过整合多种变异位点的累积效应,实现高危患者的早期风险评估,从而有助于冠心病等复杂疾病的精准预测和防控。本文就冠心病多基因风险评分的研究进展作一综述。Abstract: The incidence of coronary heart disease is affected by many environmental and genetic factors. The newly emerged polygenic risk score can make the early assessment of high-risk patients by investigating the relationship between genetic susceptibility and complex diseases, and integrating the cumulative effect of multiple variant loci. This scoring method can realize the accurate prediction and prevention of complex disease such as coronary heart disease. This article reviews the research progress of polygenic risk score for coronary heart disease.
-
Key words:
- coronary heart disease /
- risk assessment /
- polygenic risk score
-
[1] Roth GA, Mensah GA, Johnson CO, et al. Global burden of cardiovascular diseases and risk factors, 1990-2019: Update From the GBD 2019 Study[J]. J Am Coll Cardiol, 2020, 76(25): 2982-3021. doi: 10.1016/j.jacc.2020.11.010
[2] Khera AV, Emdin CA, Drake I, et al. Genetic risk, adherence to a healthy lifestyle, and coronary disease[J]. N Engl J Med, 2016, 375(24): 2349-2358. doi: 10.1056/NEJMoa1605086
[3] Dalton JE, Rothberg MB, Dawson NV, et al. Failure of traditional risk factors to adequately predict cardiovascular events in older populations[J]. J Am Geriatr Soc, 2020, 68(4): 754-761. doi: 10.1111/jgs.16329
[4] Khera AV, Chaffin M, Aragam KG, et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations[J]. Nat Genet, 2018, 50(9): 1219-1224. doi: 10.1038/s41588-018-0183-z
[5] Elliott J, Bodinier B, Bond TA, et al. Predictive accuracy of a polygenic risk score-enhanced prediction model vs a clinical risk score for coronary artery disease[J]. JAMA, 2020, 323(7): 636-645. doi: 10.1001/jama.2019.22241
[6] Martin AR, Kanai M, Kamatani Y, et al. Clinical use of current polygenic risk scores may exacerbate health disparities[J]. Nat Genet, 2019, 51(4): 584-591. doi: 10.1038/s41588-019-0379-x
[7] Mosley JD, Gupta DK, Tan J, et al. Predictive accuracy of a polygenic risk score compared with a clinical risk score for incident coronary heart disease[J]. JAMA, 2020, 323(7): 627-635. doi: 10.1001/jama.2019.21782
[8] Andersson C, Nayor M, Tsao CW, et al. Framingham Heart Study: JACC Focus Seminar, 1/8[J]. J Am Coll Cardiol, 2021, 77(21): 2680-2692. doi: 10.1016/j.jacc.2021.01.059
[9] Horne BD, Anderson JL, Carlquist JF, et al. Generating genetic risk scores from intermediate phenotypes for use in association studies of clinically significant endpoints[J]. Ann Hum Genet, 2005, 69(Pt 2): 176-186.
[10] Buniello A, MacArthur JAL, Cerezo M, et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019[J]. Nucleic Acids Res, 2019, 47(D1): D1005-D1012. doi: 10.1093/nar/gky1120
[11] Manolio TA, Collins FS, Cox NJ, et al. Finding the missing heritability of complex diseases[J]. Nature, 2009, 461(7265): 747-753. doi: 10.1038/nature08494
[12] Inouye M, Abraham G, Nelson CP, et al. Genomic risk prediction of coronary artery disease in 480, 000 adults: implications for primary prevention[J]. J Am Coll Cardiol, 2018, 72(16): 1883-1893. doi: 10.1016/j.jacc.2018.07.079
[13] Sun L, Pennells L, Kaptoge S, et al. Polygenic risk scores in cardiovascular risk prediction: A cohort study and modelling analyses[J]. PLoS Med, 2021, 18(1): e1003498. doi: 10.1371/journal.pmed.1003498
[14] Aragam KG, Dobbyn A, Judy R, et al. Limitations of contemporary guidelines for managing patients at high genetic risk of coronary artery disease[J]. J Am Coll Cardiol, 2020, 75(22): 2769-2780. doi: 10.1016/j.jacc.2020.04.027
[15] Natarajan P. Polygenic risk scoring for coronary heart disease: the first risk factor[J]. J Am Coll Cardiol, 2018, 72(16): 1894-1897. doi: 10.1016/j.jacc.2018.08.1041
[16] Martin AR, Gignoux CR, Walters RK, et al. Human demographic history impacts genetic risk prediction across diverse populations[J]. Am J Hum Genet, 2017, 100(4): 635-649. doi: 10.1016/j.ajhg.2017.03.004
[17] Duncan L, Shen H, Gelaye B, et al. Analysis of polygenic risk score usage and performance in diverse human populations[J]. Nat Commun, 2019, 10(1): 3328. doi: 10.1038/s41467-019-11112-0
[18] Gurdasani D, Barroso I, Zeggini E, et al. Genomics of disease risk in globally diverse populations[J]. Nat Rev Genet, 2019, 20(9): 520-535. doi: 10.1038/s41576-019-0144-0
[19] Kim MS, Patel KP, Teng AK, et al. Genetic disease risks can be misestimated across global populations[J]. Genome Biol, 2018, 19(1): 179. doi: 10.1186/s13059-018-1561-7
[20] Lu X, Liu Z, Cui Q, et al. A polygenic risk score improves risk stratification of coronary artery disease: a large-scale prospective Chinese cohort study[J]. Eur Heart J, 2022, 43(18): 1702-1711. doi: 10.1093/eurheartj/ehac093
[21] Wang M, Menon R, Mishra S, et al. Validation of a genome-wide polygenic score for coronary artery disease in south asians[J]. J Am Coll Cardiol, 2020, 76(6): 703-714. doi: 10.1016/j.jacc.2020.06.024
[22] Koyama S, Ito K, Terao C, et al. Population-specific and trans-ancestry genome-wide analyses identify distinct and shared genetic risk loci for coronary artery disease[J]. Nat Genet, 2020, 52(11): 1169-1177. doi: 10.1038/s41588-020-0705-3
[23] Samani NJ, Erdmann J, Hall AS, et al. Genomewide association analysis of coronary artery disease[J]. N Engl J Med, 2007, 357(5): 443-453. doi: 10.1056/NEJMoa072366
[24] Erdmann J, Kessler T, Munoz Venegas L, et al. A decade of genome-wide association studies for coronary artery disease: the challenges ahead[J]. Cardiovasc Res, 2018, 114(9): 1241-1257.
[25] Natarajan P, Young R, Stitziel NO, et al. Polygenic risk score identifies subgroup with higher burden of atherosclerosis and greater relative benefit from statin therapy in the primary prevention setting[J]. Circulation, 2017, 135(22): 2091-2101. doi: 10.1161/CIRCULATIONAHA.116.024436
[26] Larsson SC, Burgess S, Michaё lsson K. Association of genetic variants related to serum calcium levels with coronary artery disease and myocardial infarction[J]. JAMA, 2017, 318(4): 371-380. doi: 10.1001/jama.2017.8981
[27] Hartiala JA, Han Y, Jia Q, et al. Genome-wide analysis identifies novel susceptibility loci for myocardial infarction[J]. Eur Heart J, 2021, 42(9): 919-933. doi: 10.1093/eurheartj/ehaa1040
[28] Xu S, Xu Y, Liu P, et al. The novel coronary artery disease risk gene JCAD/KIAA1462 promotes endothelial dysfunction and atherosclerosis[J]. Eur Heart J, 2019, 40(29): 2398-2408. doi: 10.1093/eurheartj/ehz303
[29] Howson J, Zhao W, Barnes DR, et al. Fifteen new risk loci for coronary artery disease highlight arterial-wall-specific mechanisms[J]. Nat Genet, 2017, 49(7): 1113-1119. doi: 10.1038/ng.3874
[30] Aherrahrou R, Guo L, Nagraj VP, et al. Genetic regulation of atherosclerosis-relevant phenotypes in human vascular smooth muscle cells[J]. Circ Res, 2020, 127(12): 1552-1565. doi: 10.1161/CIRCRESAHA.120.317415
[31] 刘林鑫, 孟华, 杨冠旭, 等. HMGB1及HMGB2与冠状动脉钙化相关性的分析[J]. 临床心血管病杂志, 2021, 37(12): 1085-1089. doi: 10.13201/j.issn.1001-1439.2021.12.004
[32] Khramtsova EA, Davis LK, Stranger BE. The role of sex in the genomics of human complex traits[J]. Nat Rev Genet, 2019, 20(3): 173-190. doi: 10.1038/s41576-018-0083-1
计量
- 文章访问数: 1580
- PDF下载数: 1365
- 施引文献: 0