慢性高原性心脏病患者非瓣膜性房颤的临床特征和危险因素分析

孔祥勇, 余小华, 匡涛, 等. 慢性高原性心脏病患者非瓣膜性房颤的临床特征和危险因素分析[J]. 临床心血管病杂志, 2023, 39(3): 197-201. doi: 10.13201/j.issn.1001-1439.2023.03.008
引用本文: 孔祥勇, 余小华, 匡涛, 等. 慢性高原性心脏病患者非瓣膜性房颤的临床特征和危险因素分析[J]. 临床心血管病杂志, 2023, 39(3): 197-201. doi: 10.13201/j.issn.1001-1439.2023.03.008
KONG Xiangyong, YU Xiaohua, KUANG Tao, et al. Clinical characteristics and risk factors of atrial fibrillation in patients with chronic high altitude heart disease[J]. J Clin Cardiol, 2023, 39(3): 197-201. doi: 10.13201/j.issn.1001-1439.2023.03.008
Citation: KONG Xiangyong, YU Xiaohua, KUANG Tao, et al. Clinical characteristics and risk factors of atrial fibrillation in patients with chronic high altitude heart disease[J]. J Clin Cardiol, 2023, 39(3): 197-201. doi: 10.13201/j.issn.1001-1439.2023.03.008

慢性高原性心脏病患者非瓣膜性房颤的临床特征和危险因素分析

  • 基金项目:
    西藏自治区自然科学基金[No:XZ2022ZR-ZY35(Z)]
详细信息

Clinical characteristics and risk factors of atrial fibrillation in patients with chronic high altitude heart disease

More Information
  • 目的 分析高原地区慢性高原性心脏病患者非瓣膜性心房颤动(房颤)的临床特征和危险因素。方法 连续纳入2021年8月-2022年6月入住西藏山南市人民医院心内科的慢性高原性心脏病患者共303例, 分为房颤组(83例)和非房颤组(220例)。比较基线资料, 采用相关分析和logistic回归分析房颤的相关因素和危险因素。结果 房颤与年龄、血尿酸、N末端B型利钠肽原(NT-proBNP)、左房内径、右室内径均呈正相关(r=0.3114、0.1415、0.2452、0.1214、0.5925, 均P < 0.05), 与低密度脂蛋白胆固醇、血红蛋白、左室射血分数均呈负相关(r=-0.1271、-0.1347、-0.1827, 均P < 0.05)。多因素回归分析显示, 年龄(OR=1.074, 95%CI: 1.039~1.109, P < 0.05)、血尿酸(OR=1.003, 95%CI: 1.000~1.005, P=0.032)及左房增大(OR=1.312, 95%CI: 1.219~1.413, P < 0.05)是房颤的独立危险因素。结论 年龄、血尿酸及左房增大为慢性高原性心脏病患者房颤发生的危险因素。
  • 加载中
  • 表 1  两组患者的临床基线特征及实验室指标比较

    Table 1.  General data between the two groups  X±S

    参数 房颤组(83例) 非房颤组(220例) t/χ2 P
    男性/例(%) 41(49.4) 128(58.2) 1.885 0.170
    年龄/岁 70.4±9.9 60.4±14.8 5.691 < 0.001
    RBC/(×1012·L-1) 5.0±0.9 5.4±1.0 2.630 0.009
    HGB/(g·L-1) 147.1±28.2 156.1±30.2 -2.358 0.019
    TC/(mmol·L-1) 3.5±1.0 3.8±1.0 -1.937 0.054
    LDL-C/(mmol·L-1) 2.2±0.8 2.5±0.8 -2.223 0.027
    TG/(mmol·L-1) 1.2±0.7 1.2±0.6 0.160 0.873
    CR/(μmol·L-1) 79.8±23.4 73.5±27.4 1.869 0.063
    UA/(μmol·L-1) 472.4±157.3 424.9±145.0 2.479 0.014
    LVEF/% 56.7±7.3 59.8±7.5 -3.224 0.001
    LV/mm 53.8±4.7 52.7±5.2 1.761 0.079
    LA/mm 43.4±5.5 35.1±4.9 12.762 < 0.001
    RV/mm 32.9±4.4 31.8±3.7 2.122 0.035
    PASP/mmHg 61.2±16.0 57.4±14.6 1.960 0.051
    NT-proBNP/(ng·L-1) 7702.9± 8708.7 3584.5±6675.7 4.388 < 0.001
    收缩压/mmHg 131.9±17.3 134.3±14.1 -1.281 0.201
    舒张压/mmHg 88.0±12.2 87.5±9.9 0.405 0.686
    高血压病/例(%) 36(43.4) 92(41.8) 0.060 0.807
    糖尿病/例(%) 5(6.0) 5(2.3) 1.612 0.204
    冠心病/例(%) 17(20.5) 44(20.0) 0.009 0.926
    吸烟史/例(%) 2(2.4) 15(6.8) 1.458 0.227
    饮酒史/例(%) 30(36.1) 91(41.6) 0.733 0.392
    注:RBC:红细胞;CR:血肌酐;LV:左室。1mmHg=0.133 kPa。
    下载: 导出CSV

    表 2  房颤与相关变量的相关性分析

    Table 2.  Correlation analysis of AF and related variables

    统计值 年龄 HGB LDL-C UA NT-proBNP LA RV LVEF
    P < 0.001 0.0190 0.0270 0.0137 < 0.001 < 0.001 0.0346 0.0014
    r 0.3117 -0.1347 -0.1271 0.1415 0.2452 0.5925 0.1214 -0.1827
    下载: 导出CSV

    表 3  房颤危险因素的Logistic回归分析

    Table 3.  Logistic regression analysis of risk factors of AF

    变量 单因素 多因素
    OR(95%CI) P OR(95%CI) P
    年龄 1.064(1.039~1.089) < 0.001 1.074(1.040~1.109) < 0.001
    HGB 0.990(0.981~0.998) 0.020 0.996(0.983~1.009) 0.514
    LDL-C 0.685(0.488~0.960) 0.028 0.846(0.534~1.341) 0.477
    UA 1.002(1.000~1.004) 0.015 1.003(1.000~1.005) 0.032
    LA 1.328(1.241~1.422) < 0.001 1.313(1.221~1.413) < 0.001
    RV 1.068(1.004~1.136) 0.037 0.961(0.876~1.054) 0.401
    LVEF 0.944(0.911~0.979) 0.002 0.987(0.939~1.038) 0.617
    下载: 导出CSV
  • [1]

    达娃次仁, 格桑罗布, 卓玛次仁, 等. 慢性高原心脏病患者肺动脉收缩压对心脏结构及功能的影响[J]. 中华心血管病杂志, 2013, 41(9): 761-765. doi: 10.3760/cma.j.issn.0253-3758.2013.09.009

    [2]

    Gou Q, Shi R, Zhang X, et al. The Prevalence and Risk Factors of High-Altitude Pulmonary Hypertension Among Native Tibetans in Sichuan Province, China[J]. High Alt Med Biol, 2020, 21(4): 327-335. doi: 10.1089/ham.2020.0022

    [3]

    Soria R, Egger M, Scherrer U, et al. Pulmonary arterial pressure at rest and during exercise in chronic mountain sickness: a meta-analysis[J]. Eur Respir J, 2019, 53(6): 1802040. doi: 10.1183/13993003.02040-2018

    [4]

    Hoeper MM, Ghofrani HA, Grnnig E, et al. Pulmonary hypertension[J]. Deutsch Arztebl Int, 2017, 114(5): 73-84.

    [5]

    Lundby C, Calbet J, van Hall G, et al. Sustained sympathetic activity in altitude acclimatizing lowlanders and high-altitude natives[J]. Scand J Med Sci Sports, 2018, 28(3): 854-861. doi: 10.1111/sms.12976

    [6]

    李中根, 李凌, 李黎, 等. 心外膜脂肪厚度与射血分数保留性心衰风险的相关性[J]. 临床心血管病杂志, 2022, 37(6): 393-399. https://www.cnki.com.cn/Article/CJFDTOTAL-LCXB202205012.htm

    [7]

    中华医学会第三次全国高原医学学术讨论会. 我国高原病命名、分型及诊断标准[J]. 高原医学杂志, 2010, 20(1): 9-11. https://www.cnki.com.cn/Article/CJFDTOTAL-GYYZ201001004.htm

    [8]

    Sydykov A, Mamazhakypov A, Maripov A, et al. Pulmonary hypertension in acute and chronic high altitude maladaptation disorders[J]. Int J Environ Res Public Health, 2021, 18(4): 1692. doi: 10.3390/ijerph18041692

    [9]

    Negi PC, Marwaha R, Asotra S, et al. Prevalence of highaltitude pulmonary hypertension among the natives of SpitiValley-A high altitude region in Himachal Pradesh, India[J]. High Alt Med Biol, 2014, 15(4): 504-510. doi: 10.1089/ham.2013.1112

    [10]

    Kleinsasser A, Treml B, Burtscher J, et al. Oxygen availability in a HAPE-positive and a HAPE-negative woman before and during a visit to 3480 meters[J]. Respir Physiol Neurobiol, 2020, 281: 103513. doi: 10.1016/j.resp.2020.103513

    [11]

    Swenson ER. Early hours in the development of high-altitude pulmonary edema: time course and mechanisms[J]. J Appl Physiol, 2020, 128(6): 1539-1546. doi: 10.1152/japplphysiol.00824.2019

    [12]

    Dusik M, Fingrova Z, Ambroz D, et al. The role of pulmonary artery wedge pressure on the incidence of atrial fibrillation and atrial tachycardias in patients with isolated pre-capillary pulmonary hypertension[J]. Physiol Res, 2021, 70(6): 841-849.

    [13]

    马春鸽, 梁二鹏, 王现青, 等. 非瓣膜性心房颤动患者血尿酸、红细胞比容水平与缺血性脑卒中的相关性分析[J]. 临床心血管病杂志, 2021, 37(6): 547-552. https://www.cnki.com.cn/Article/CJFDTOTAL-LCXB202106011.htm

    [14]

    Sun XZ, Li SY, Tian XY, et al. Effect of Rho kinase inhibitor fasudil on the expression ET-1 and NO in rats with hypoxic pulmonary hypertension[J]. Clin Hemorheol Microcirc, 2019, 71(1): 3-8.

    [15]

    Dai Y, Chen X, Song X, et al. Immunotherapy of endothelin-1 receptor type A for pulmonary arterial hypertension[J]. J Am Coll Cardiol, 2019, 73(20): 2567-2580.

    [16]

    Wang M, Liu M, Huang J, et al. Long-term high-altitude exposure does not increase the incidence of atrial fibrillation associated with organic heart diseases[J]. High Alt Med Biol, 2021, 22(3): 285-292.

    [17]

    Kuwabara M, Niwa K, Nishihara S, et al. Hyperuricemia is an independent competing risk factor for atrial fibrillation[J]. Int J Cardiol, 2017, 231(5): 137-142.

    [18]

    Savla JJ, Levine BD, Sadek HA. The effect ofhypoxia on cardiovascular disease: Friend or foe?[J]. High Alt Med Biol, 2018, 19(2): 124-130.

    [19]

    Simpson LL, Busch SA, Oliver SJ, et al. Baroreflex control ofsympathetic vasomotor activity and resting arterial pressure athigh altitude: Insight from Lowlanders and Sherpa[J]. J Physiol, 2019, 597(9): 2379-2390.

    [20]

    Lewis NCS, Bailey DM, duManoir GR, et al. Conduit arterystructure and function in lowlanders and native highlanders: Relationships with oxidative stress and role of sympathoexcitation[J]. J Physiol, 2014, 592(5): 1009-1024.

    [21]

    Chuang SY, Wu CC, Hsu PF, et al. Hyperuricemia and incident atrial fibrillation in a normotensive elderly population in Taiwan[J]. Nutr Metab Cardiovasc Dis, 2014, 24(5): 1020-1026.

  • 加载中
计量
  • 文章访问数:  1696
  • PDF下载数:  441
  • 施引文献:  0
出版历程
收稿日期:  2022-11-08
刊出日期:  2023-03-13

目录