主动脉瓣疾病手术治疗现状与进展

王世杰, 刘鹏, 温姝钰, 等. 主动脉瓣疾病手术治疗现状与进展[J]. 临床心血管病杂志, 2023, 39(6): 417-424. doi: 10.13201/j.issn.1001-1439.2023.06.003
引用本文: 王世杰, 刘鹏, 温姝钰, 等. 主动脉瓣疾病手术治疗现状与进展[J]. 临床心血管病杂志, 2023, 39(6): 417-424. doi: 10.13201/j.issn.1001-1439.2023.06.003
WANG Shijie, LIU Peng, WEN Shuyu, et al. Current status and progress of aortic valve surgery treatment[J]. J Clin Cardiol, 2023, 39(6): 417-424. doi: 10.13201/j.issn.1001-1439.2023.06.003
Citation: WANG Shijie, LIU Peng, WEN Shuyu, et al. Current status and progress of aortic valve surgery treatment[J]. J Clin Cardiol, 2023, 39(6): 417-424. doi: 10.13201/j.issn.1001-1439.2023.06.003

主动脉瓣疾病手术治疗现状与进展

详细信息

Current status and progress of aortic valve surgery treatment

More Information
  • 主动脉瓣疾病的人群患病率稳中有升,迄今为止手术治疗是其最为有效的治疗手段。外科主动瓣膜置换、经导管主动脉瓣置换、主动脉瓣修复是手术治疗方案的3大策略。经典的开放式外科主动脉瓣瓣膜置换提供了最为稳定有效的治疗效果。经导管主动脉瓣置换则以其近乎无创、高临床获益的特点给老年全风险人群新的治疗选择。而主动脉瓣修复则以天然无植入、更高的生活质量以及可能更长的耐久性吸引了年轻的心脏瓣膜病患者。随着对疾病机理认识的加深、材料和技术的不断进步,对于某一特定主动脉瓣疾病患者的外科处理有着更加多元化的选择,这就要求心脏外科医生根据患者情况结合现有最新证据为患者制定个体化治疗方案甚至瓣膜疾病终身管理策略。
  • 加载中
  • 图 1  临床研究结局

    Figure 1.  The main RCT of TAVI

  • [1]

    国家心血管病中心. 中国心血管健康与疾病报告2022[M]. 北京: 科学出版社, 2022: 100.

    [2]

    Coffey S, Roberts-Thomson R, Brown A, et al. Global epidemiology of valvular heart disease[J]. Nat Rev Cardiol, 2021, 18(12): 853-864. doi: 10.1038/s41569-021-00570-z

    [3]

    Vincent F, Ternacle J, Denimal T, et al. Transcatheter Aortic Valve Replacement in Bicuspid Aortic Valve Stenosis[J]. Circulation, 2021, 143(10): 1043-1061. doi: 10.1161/CIRCULATIONAHA.120.048048

    [4]

    Kim KM, Arghami A, Habib R, et al. The Society of Thoracic Surgeons Adult Cardiac Surgery Database: 2022 Update on Outcomes and Research[J]. Ann Thorac Surg, 2023, 115(3): 566-574. doi: 10.1016/j.athoracsur.2022.12.033

    [5]

    中国生物医学工程学会体外循环分会, 赵举, 黑飞龙, 侯晓彤, 等. 2021年中国心外科手术和体外循环数据白皮书[J]. 中国体外循环杂志, 2022, 20(4): 196-199. https://www.cnki.com.cn/Article/CJFDTOTAL-TWXH202204002.htm

    [6]

    Mack MJ, Leon MB, Thourani VH, et al. Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients[J]. N Engl J Med, 2019, 380(18): 1695-1705. doi: 10.1056/NEJMoa1814052

    [7]

    UK TAVI Trial Investigators, Toff WD, Hildick-Smith D, et al. Effect of transcatheter aortic valve implantation vs surgical aortic valve replacement on all-cause mortality in patients with aortic stenosis: A Randomized Clinical Trial[J]. JAMA, 2022, 327(19): 1875-1887. doi: 10.1001/jama.2022.5776

    [8]

    Korteland NM, Etnel J, Arabkhani B, et al. Mechanical aortic valve replacement in non-elderly adults: meta-analysis and microsimulation[J]. Eur Heart J, 2017, 38(45): 3370-3377. doi: 10.1093/eurheartj/ehx199

    [9]

    Moscarelli M, Lorusso R, Abdullahi Y, et al. The effect of minimally invasive surgery and sternotomy on physical activity and quality of life[J]. Heart Lung Circ, 2021, 30(6): 882-887. doi: 10.1016/j.hlc.2020.09.936

    [10]

    Rodríguez-Caulo EA, Guijarro-Contreras A, Guzón A, et al. Quality of life after ministernotomy versus full sternotomy aortic valve replacement[J]. Semin Thorac Cardiovasc Surg, 2021, 33(2): 328-334. doi: 10.1053/j.semtcvs.2020.07.013

    [11]

    Russo MJ, Thourani VH, Cohen DJ, et al. Minimally invasive versus full sternotomy for isolated aortic valve replacement in low-risk patients[J]. Ann Thorac Surg, 2022, 114(6): 2124-2130. doi: 10.1016/j.athoracsur.2021.11.048

    [12]

    Solinas M, Bianchi G, Chiaramonti F, et al. Right anterior mini-thoracotomy and sutureless valves: the perfect marriage[J]. Ann Cardiothorac Surg, 2020, 9(4): 305-313. doi: 10.21037/acs-2019-surd-172

    [13]

    Del Giglio M, Mikus E, Nerla R, et al. Right anterior mini-thoracotomy vs. conventional sternotomy for aortic valve replacement: a propensity-matched comparison[J]. J Thorac Dis, 2018, 10(3): 1588-1595. doi: 10.21037/jtd.2018.03.47

    [14]

    Bakhtiary F, Salamate S, Amer M, et al. Comparison of Right Anterior Mini-Thoracotomy Versus Partial Upper Sternotomy in Aortic Valve Replacement[J]. Adv Ther, 2022, 39(9): 4266-4284. doi: 10.1007/s12325-022-02263-6

    [15]

    Shrestha ML, Junge A, Haverich A, et al. David procedure through an upper partial sternotomy[J]. Ann Cardiothorac Surg, 2015, 4(2): 212-213.

    [16]

    Hou B, Zhao R, Wang D, et al. Outcomes of the valve-sparing root replacement procedure with partial upper sternotomy[J]. J Cardiovasc Dev Dis, 2021, 8(11): 100.

    [17]

    Kyt V, Sipilä J, Ahtela E, et al. Mechanical Versus Biologic Prostheses for Surgical Aortic Valve Replacement in Patients Aged 50 to 70[J]. Ann Thorac Surg, 2020, 110(1): 102-110. doi: 10.1016/j.athoracsur.2019.10.027

    [18]

    Clarizia NA, Bapat VN, Ruel M. Current surgical bioprostheses: Looking to the future[J]. Prog Cardiovasc Dis, 2022, 72: 21-25. doi: 10.1016/j.pcad.2022.06.005

    [19]

    Salaun E, Mahjoub H, Girerd N, et al. Rate, timing, correlates, and outcomes of hemodynamic valve deterioration after bioprosthetic surgical aortic valve replacement[J]. Circulation, 2018, 138(10): 971-985. doi: 10.1161/CIRCULATIONAHA.118.035150

    [20]

    Persson M, Glaser N, Nilsson J, et al. Comparison of long-term performance of bioprosthetic aortic valves in Sweden From 2003 to 2018, [J]. JAMA Netw Open, 2022, 5(3): e220962. doi: 10.1001/jamanetworkopen.2022.0962

    [21]

    Côté N, Pibarot P, Clavel MA. Incidence, risk factors, clinical impact, and management of bioprosthesis structural valve degeneration[J]. Curr Opin Cardiol, 2017, 32(2): 123-129. doi: 10.1097/HCO.0000000000000372

    [22]

    Etnel J, Huygens SA, Grashuis P, et al. Bioprosthetic aortic valve replacement in nonelderly adults: a systematic review, meta-analysis, microsimulation[J]. Circ Cardiovasc Qual Outcomes, 2019, 12(2): e005481. doi: 10.1161/CIRCOUTCOMES.118.005481

    [23]

    Fischlein T, Folliguet T, Meuris B, et al. Sutureless versus conventional bioprostheses for aortic valve replacement in severe symptomatic aortic valve stenosis[J]. J Thorac Cardiovasc Surg, 2021, 161(3): 920-932. doi: 10.1016/j.jtcvs.2020.11.162

    [24]

    Szecel D, Lamberigts M, Rega F, et al. Avoiding oversizing in sutureless valves leads to lower transvalvular gradients and less permanent pacemaker implants postoperatively[J]. Interact Cardiovasc Thorac Surg, 2022, 35(2): 100. http://pubmed.ncbi.nlm.nih.gov/35689614/

    [25]

    Ross DN. Replacement of aortic and mitral valves with a pulmonary autograft[J]. Lancet, 1967, 2(7523): 956-958. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0140673667907945&originContentFamily=serial&_origin=article&_ts=1400987554&md5=e2fcc779c896f1ad9cc5e2419da4692d

    [26]

    Aboud A, Charitos EI, Fujita B, et al. Long-term outcomes of patients undergoing the ross procedure[J]. J Am Coll Cardiol, 2021, 77(11): 1412-1422. doi: 10.1016/j.jacc.2021.01.034

    [27]

    El-Hamamsy I, Toyoda N, Itagaki S, et al. Propensity-matched comparison of the ross procedure and prosthetic aortic valve replacement in adults[J]. J Am Coll Cardiol, 2022, 79(8): 805-815. doi: 10.1016/j.jacc.2021.11.057

    [28]

    Yokoyama Y, Kuno T, Toyoda N, et al. Ross procedure versus mechanical versus bioprosthetic aortic valve replacement: a network meta-analysis[J]. J Am Heart Assoc, 2023, 12(1): e8066.

    [29]

    Cribier A, Eltchaninoff H, Bash A, et al. Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description[J]. Circulation, 2002, 106(24): 3006-3008. doi: 10.1161/01.CIR.0000047200.36165.B8

    [30]

    Leon MB, Smith CR, Mack M, et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery[J]. N Engl J Med, 2010, 363(17): 1597-607. doi: 10.1056/NEJMoa1008232

    [31]

    Xiong TY, Ali WB, Feng Y, et al. Transcatheter aortic valve implantation in patients with bicuspid valve morphology: a roadmap towards standardization[J]. Nat Rev Cardiol, 2023, 20(1): 52-67. doi: 10.1038/s41569-022-00734-5

    [32]

    Mack MJ, Leon MB, Thourani VH, et al. Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients[J]. N Engl J Med, 2019, 380(18): 1695-1705. doi: 10.1056/NEJMoa1814052

    [33]

    Jørgensen TH, Thyregod HGH, Ihlemann N, et al., Eight-year outcomes for patients with aortic valve stenosis at low surgical risk randomized to transcatheter vs. surgical aortic valve replacement[J]. Eur Heart J, 2021, 42(30): 2912-2919. doi: 10.1093/eurheartj/ehab375

    [34]

    Makkar RR, Thourani VH, Mack MJ, et al. Five-year outcomes of transcatheter or surgical aortic-valve replacement[J]. New Engl J Med, 2020, 382(9): 799-809. doi: 10.1056/NEJMoa1910555

    [35]

    Hameed I, Oakley CT, Hameed N, et al. Alternate accesses for transcatheter aortic valve replacement: A network meta-analysis[J]. J Card Surg, 2021, 36(11): 4308-4319. doi: 10.1111/jocs.15961

    [36]

    Abdel-Wahab M, Mehilli J, Frerker C, et al. Comparison of balloon-expandable vs self-expandable valves in patients undergoing transcatheter aortic valve replacement: the CHOICE randomized clinical trial[J]. JAMA, 2014, 311(15): 1503-1514. doi: 10.1001/jama.2014.3316

    [37]

    Abdel-Wahab M, Landt M, Neumann FJ, et al. 5-year outcomes after tavr with balloon-expandable versus self-expanding valves: results from the CHOICE Randomized Clinical Trial[J]. JACC Cardiovasc Interv, 2020, 13(9): 1071-1082. doi: 10.1016/j.jcin.2019.12.026

    [38]

    Lanz J, Kim WK, Walther T, et al. Safety and efficacy of a self-expanding versus a balloon-expandable bioprosthesis for transcatheter aortic valve replacement in patients with symptomatic severe aortic stenosis: a randomised non-inferiority trial[J]. Lancet, 2019, 394(10209): 1619-1628. doi: 10.1016/S0140-6736(19)32220-2

    [39]

    Thiele H, Kurz T, Feistritzer HJ, et al. Comparison of newer generation self-expandable vs. balloon-expandable valves in transcatheter aortic valve implantation: the randomized SOLVE-TAVI trial[J]. Eur Heart J, 2020, 41(20): 1890-1899. doi: 10.1093/eurheartj/ehaa036

    [40]

    Tchetche D, de Biase C, van Gils L, et al. Bicuspid Aortic Valve Anatomy and Relationship With Devices: The BAVARD Multicenter Registry[J]. Circ Cardiovasc Interv, 2019, 12(1): e007107. doi: 10.1161/CIRCINTERVENTIONS.118.007107

    [41]

    Sillesen AS, Vøgg O, Pihl C, et al. Prevalence of Bicuspid Aortic Valve and Associated Aortopathy in Newborns in Copenhagen, Denmark[J]. JAMA, 2021, 325(6): 561-567. doi: 10.1001/jama.2020.27205

    [42]

    Roberts WC, Ko JM. Frequency by decades of unicuspid, bicuspid, and tricuspid aortic valves in adults having isolated aortic valve replacement for aortic stenosis, with or without associated aortic regurgitation[J]. Circulation, 2005, 111(7): 920-925. doi: 10.1161/01.CIR.0000155623.48408.C5

    [43]

    Otto CM, Nishimura RA, Bonow RO, et al. 2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines[J]. Circulation, 2021, 143(5): e35-e71. http://pubmed.ncbi.nlm.nih.gov/24589852/

    [44]

    Vahanian A, Beyersdorf F, Praz F, et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease[J]. Eur Heart J, 2022, 43(7): 561-632. doi: 10.1093/eurheartj/ehab395

    [45]

    Youssefi P, Pepper J. A new age of aortic valve repair[J]. Eur J Cardiothorac Surg, 2021, 60(5): 1062-1063. doi: 10.1093/ejcts/ezab258

    [46]

    Sanaiha Y, Hadaya JE, Tran Z, et al. Transcatheter and Surgical Aortic Valve Replacement in Patients With Bicuspid Aortic Valve Stenosis[J]. Ann Thorac Surg, 2023, 115(3): 611-618. doi: 10.1016/j.athoracsur.2022.06.030

    [47]

    Starr A, Menashe V, Dotter C. Surgical correction of aortic insufficiency associated with ventricular septal defect[J]. Surg Gynecol Obstet, 1960, 111: 71-76. http://pubmed.ncbi.nlm.nih.gov/13833856/

    [48]

    Jasinski MJ, Kosiorowska K, Gocol R, et al. Bicuspid aortic valve repair: outcomes after 17 years of experience[J]. Eur J Cardiothorac Surg, 2021, 60(5): 1053-1061. doi: 10.1093/ejcts/ezab176

    [49]

    Anand J, Schafstedde M, Giebels C, et al. Significance of effective height and mechanism of regurgitation in tricuspid aortic valve repair[J]. Ann Thorac Surg, 2023, 115(2): 429-435.

    [50]

    Wallace F, Buratto E, Schulz A, et al. Long-term outcomes of primary aortic valve repair for isolated congenital aortic stenosis in children[J]. J Thorac Cardiovasc Surg, 2022, 164(5): 1263-1274. e1.

    [51]

    Ozaki S, Kawase I, Yamashita H, et al. Aortic valve reconstruction using self-developed aortic valve plasty system in aortic valve disease[J]. Interact Cardiovasc Thorac Surg, 2011, 12(4): 550-553. http://icvts.oxfordjournals.org/content/12/4/550.full.pdf

    [52]

    Unai S, Ozaki S, Johnston DR, et al. Aortic Valve Reconstruction With Autologous Pericardium Versus a Bioprosthesis: The Ozaki Procedure in Perspective[J]. J Am Heart Assoc, 2023, 12(2): e027391.

    [53]

    Mylonas KS, Tasoudis PT, Pavlopoulos D, et al. Aortic valve neocuspidization using the Ozaki technique: A meta-analysis of reconstructed patient-level data[J]. Am Heart J, 2023, 255: 1-11.

    [54]

    Secinaro A, Milano EG, Ciancarella P, et al. Blood flow characteristics after aortic valve neocuspidization in paediatric patients: a comparison with the Ross procedure, [J]. Eur Heart J Cardiovasc Imaging, 2022, 23(2): 275-282. http://www.ncbi.nlm.nih.gov/pubmed/33550364

  • 加载中

(1)

计量
  • 文章访问数:  1230
  • PDF下载数:  261
  • 施引文献:  0
出版历程
收稿日期:  2023-05-29
刊出日期:  2023-06-13

目录