PCSK9通过非低密度脂蛋白胆固醇途径影响心血管疾病的研究进展

任阳荷, 王红, 李为民. PCSK9通过非低密度脂蛋白胆固醇途径影响心血管疾病的研究进展[J]. 临床心血管病杂志, 2023, 39(7): 563-567. doi: 10.13201/j.issn.1001-1439.2023.07.014
引用本文: 任阳荷, 王红, 李为民. PCSK9通过非低密度脂蛋白胆固醇途径影响心血管疾病的研究进展[J]. 临床心血管病杂志, 2023, 39(7): 563-567. doi: 10.13201/j.issn.1001-1439.2023.07.014
REN Yanghe, WANG Hong, LI Weimin. Research progress of PCSK9 affecting cardiovascular diseases through non-low-density lipoprotein cholestero-l pathway[J]. J Clin Cardiol, 2023, 39(7): 563-567. doi: 10.13201/j.issn.1001-1439.2023.07.014
Citation: REN Yanghe, WANG Hong, LI Weimin. Research progress of PCSK9 affecting cardiovascular diseases through non-low-density lipoprotein cholestero-l pathway[J]. J Clin Cardiol, 2023, 39(7): 563-567. doi: 10.13201/j.issn.1001-1439.2023.07.014

PCSK9通过非低密度脂蛋白胆固醇途径影响心血管疾病的研究进展

详细信息

Research progress of PCSK9 affecting cardiovascular diseases through non-low-density lipoprotein cholestero-l pathway

More Information
  • 前蛋白转化酶枯草杆菌蛋白酶/kexin 9(PCSK9)是前蛋白转化酶家族的第9个成员,是一组丝氨酸蛋白酶,主要由肝脏分泌并释放到血液,通过降解低密度脂蛋白受体(low-density lipoprotein receptor,LDLR)来升高低密度脂蛋白胆固醇(low-density lipoprotein cholesterol,LDL-C),从而促进动脉粥样斑块的形成。PCSK9抑制剂的出现为血脂异常的治疗开辟了新途径。近年来越来越多的研究表明,PCSK9不仅调节肝脏的脂质代谢,同时还参与肝外器官的生理病理过程,影响多种心血管疾病。本文就PCSK9与心血管疾病的最新进展进行综述。
  • 加载中
  • [1]

    Malo J, Parajuli A, Walker SW. PCSK9: from molecular biology to clinical applications[J]. Ann Clin Biochem, 2020, 57(1): 7-25. doi: 10.1177/0004563219864379

    [2]

    Ben-Naim L, Khalaila I, Papo N. Modifying pH-sensitive PCSK9/LDLR interactions as a strategy to enhance hepatic cell uptake of low-density lipoprotein cholesterol(LDL-C)[J]. Protein Eng Des Sel, 2022, 35.

    [3]

    Barale C, Melchionda E, Morotti A, et al. PCSK9 Biology and Its Role in Atherothrombosis[J]. Int J Mol Sci, 2021, 22(11).

    [4]

    Da Dalt L, Castiglioni L, Baragetti A, et al. PCSK9 deficiency rewires heart metabolism and drives heart failure with preserved ejection fraction[J]. Eur Heart J, 2021, 42(32): 3078-3090. doi: 10.1093/eurheartj/ehab431

    [5]

    Talasaz AH, Ho AJ, Bhatty F, et al. Meta-analysis of clinical outcomes of PCSK9 modulators in patients with established ASCVD[J]. Pharmacotherapy, 2021, 41(12): 1009-1023. doi: 10.1002/phar.2635

    [6]

    Giugliano RP, Mach F, Zavitz K, et al. Cognitive Function in a Randomized Trial of Evolocumab[J]. N Engl J Med, 2017, 377(7): 633-643. doi: 10.1056/NEJMoa1701131

    [7]

    Taskinen MR, Björnson E, Kahri J, et al. Effects of Evolocumab on the Postprandial Kinetics of Apo (Apolipoprotein) B100-and B48-Containing Lipoproteins in Subjects With Type 2 Diabetes[J]. Arterioscler Thromb Vasc Biol, 2021, 41(2): 962-975. doi: 10.1161/ATVBAHA.120.315446

    [8]

    Sharotri V, Collier DM, Olson DR, et al. Regulation of epithelial sodium channel trafficking by proprotein convertase subtilisin/kexin type 9(PCSK9)[J]. J Biol Chem, 2012, 287(23): 19266-19274. doi: 10.1074/jbc.M112.363382

    [9]

    Blom DJ, Djedjos CS, Monsalvo ML, et al. Effects of Evolocumab on Vitamin E and Steroid Hormone Levels: Results From the 52-Week, Phase 3, Double-Blind, Randomized, Placebo-Controlled DESCARTES Study[J]. Circ Res, 2015, 117(8): 731-741. doi: 10.1161/CIRCRESAHA.115.307071

    [10]

    Ghosh M, Galman C, Rudling M, et al. Erratum: Influence of physiological changes in endogenous estrogen on circulating PCSK9 and LDL cholesterol[J]. J Lipid Res, 2018, 59(11): 2253. doi: 10.1194/jlr.M055780ERR

    [11]

    冯若男, 周华. PCSK9与动脉粥样硬化性心血管疾病的研究进展[J]. 中国动脉硬化杂志, 2020, 28(12): 5. https://www.cnki.com.cn/Article/CJFDTOTAL-KDYZ202012016.htm

    [12]

    Ding Z, Pothineni N, Goel A, et al. Corrigendum to: PCSK9 and inflammation: role of shear stress, pro-inflammatory cytokines, and LOX-1[J]. Cardiovasc Res, 2022, 118(8): 2031. doi: 10.1093/cvr/cvab352

    [13]

    Badimon L, Luquero A, Crespo J, et al. PCSK9 and LRP5 in macrophage lipid internalization and inflammation[J]. Cardiovasc Res, 2021, 117(9): 2054-2068. doi: 10.1093/cvr/cvaa254

    [14]

    Yan L, Jia Q, Cao H, et al. Fisetin ameliorates atherosclerosis by regulating PCSK9 and LOX-1 in apoE-/-mice[J]. Exp Ther Med, 2021, 21(1): 25.

    [15]

    Punch E, Klein J, Diaba-Nuhoho P, et al. Effects of PCSK9 Targeting: Alleviating Oxidation, Inflammation, and Atherosclerosis[J]. J Am Heart Assoc, 2022, 11(3): e023328. doi: 10.1161/JAHA.121.023328

    [16]

    Tang ZH, Peng J, Ren Z, et al. New role of PCSK9 in atherosclerotic inflammation promotion involving the TLR4/NF-κB pathway[J]. Atherosclerosis, 2017, 262: 113-122. doi: 10.1016/j.atherosclerosis.2017.04.023

    [17]

    Guo Y, Yan B, Tai S, et al. PCSK9: Associated with cardiac diseases and their risk factors?[J]. Arch Biochem Biophys, 2021, 704: 108717. doi: 10.1016/j.abb.2020.108717

    [18]

    Barale C, Melchionda E, Morotti A, et al. PCSK9 Biology and Its Role in Atherothrombosis[J]. Int J Mol Sci, 2021, 22(11): 5880. doi: 10.3390/ijms22115880

    [19]

    Gao Y, Zhang HB, Hou LL, Wang SM. Predictive value of plasma PCSK9 levels in acute myocardial infarction patients without reperfusion therapy for recurrence of cardiovascular events within 1 year[J]. Zhonghua Yi Xue Za Zhi, 2019, 99(35): 2750-2755.

    [20]

    Luquero A, Badimon L, Borrell-Pages M. PCSK9 Functions in Atherosclerosis Are Not Limited to Plasmatic LDL-Cholesterol Regulation[J]. Front Cardiovasc Med, 2021, 8: 639727. doi: 10.3389/fcvm.2021.639727

    [21]

    Schwartz GG, Steg PG, Szarek M, et al. Alirocumab and Cardiovascular Outcomes after Acute Coronary Syndrome[J]. N Engl J Med, 2018, 379(22): 2097-2107. doi: 10.1056/NEJMoa1801174

    [22]

    Lopes RD, de Barros E Silva P, de Andrade Jesuíno I, et al. Timing of Loading Dose of Atorvastatin in Patients Undergoing Percutaneous Coronary Intervention for Acute Coronary Syndromes: Insights From the SECURE-PCI Randomized Clinical Trial[J]. JAMA Cardiol, 2018, 3(11): 1113-1118. doi: 10.1001/jamacardio.2018.3408

    [23]

    Räber L, Ueki Y, Otsuka T, et al. Effect of Alirocumab Added to High-Intensity Statin Therapy on Coronary Atherosclerosis in Patients With Acute Myocardial Infarction: The PACMAN-AMI Randomized Clinical Trial[J]. JAMA, 2022, 327(18): 1771-1781. doi: 10.1001/jama.2022.5218

    [24]

    Lewis BS. Atrial fibrillation and stroke prevention[J]. Eur Heart J Cardiovasc Pharmacother, 2021, 7(FI1): f1-f2. doi: 10.1093/ehjcvp/pvab023

    [25]

    Pastori D, Ettorre E, Carnevale R, et al. Atherosclerosis in Atrial Fibrillation Study, Interaction between serum endotoxemia and proprotein convertase subtilisin/kexin 9(PCSK9) in patients with atrial fibrillation: A post-hoc analysis from the ATHERO-AF cohort[J]. Atherosclerosis, 2019, 289: 195-200. doi: 10.1016/j.atherosclerosis.2019.07.002

    [26]

    Kwakernaak AJ, Lambert G, Muller Kobold AC, et al. Adiposity blunts the positive relationship of thyrotropin with proprotein convertase subtilisin-kexin type 9 levels in euthyroid subjects[J]. Thyroid, 2013, 23(2): 166-172. doi: 10.1089/thy.2012.0434

    [27]

    Lurie A, Wang J, Hinnegan KJ, et al. Prevalence of Left Atrial Thrombus in Anticoagulated Patients With Atrial Fibrillation[J]. J Am Coll Cardiol, 2021, 77(23): 2875-2886. doi: 10.1016/j.jacc.2021.04.036

    [28]

    Cammisotto V, Pastori D, Nocella C, et al. PCSK9 Regulates Nox2-Mediated Platelet Activation via CD36 Receptor in Patients with Atrial Fibrillation[J]. Antioxidants(Basel), 2020, 9(4): 296.

    [29]

    Paciullo F, Petito E, Falcinelli E, et al. Pleiotropic effects of PCSK9-inhibition on hemostasis: Anti-PCSK9 reduce FVⅢ levels by enhancing LRP1 expression[J]. Thromb Res, 2022, 213: 170-172. doi: 10.1016/j.thromres.2022.03.021

    [30]

    Bovenschen N, Herz J, Grimbergen JM, et al. Elevated plasma factor Ⅷ in a mouse model of low-density lipoprotein receptor-related protein deficiency[J]. Blood, 2003, 101(10): 3933-3939. doi: 10.1182/blood-2002-07-2081

    [31]

    Pastori D, Nocella C, Farcomeni A, et al. Relationship of PCSK9 and Urinary Thromboxane Excretion to Cardiovascular Events in Patients With Atrial Fibrillation[J]. J Am Coll Cardiol, 2017, 70(12): 1455-1462. doi: 10.1016/j.jacc.2017.07.743

    [32]

    Yang S, Shen W, Zhang HZ, et al. Effect of PCSK9 Monoclonal Antibody Versus Placebo/Ezetimibe on Atrial Fibrillation in Patients at High Cardiovascular Risk: A Meta-Analysis of 26 Randomized Controlled Trials[J]. Cardiovasc Drugs Ther, 2022.

    [33]

    Lopaschuk GD, Karwi QG, Tian R, et al. Cardiac Energy Metabolism in Heart Failure[J]. Circ Res, 2021, 128(10): 1487-1513. doi: 10.1161/CIRCRESAHA.121.318241

    [34]

    Da Dalt L, Castiglioni L, Baragetti A, et al. PCSK9 deficiency rewires heart metabolism and drives heart failure with preserved ejection fraction[J]. Eur Heart J, 2021, 42(32): 3078-3090. doi: 10.1093/eurheartj/ehab431

    [35]

    Chandrakala AN, Sukul D, Selvarajan K, et al. Parthasarathy, Induction of brain natriuretic peptide and monocyte chemotactic protein-1 gene expression by oxidized low-density lipoprotein: relevance to ischemic heart failure[J]. Am J Physiol Cell Physiol, 2012, 302(1): C165-177. doi: 10.1152/ajpcell.00116.2011

    [36]

    Dehn S, Thorp EB. Myeloid receptor CD36 is required for early phagocytosis of myocardial 768 infarcts and induction of Nr4a1-dependent mechanisms of cardiac repair[J]. FASEB J, 2018, 32(1): 254-264. doi: 10.1096/fj.201700450r

    [37]

    Miñana G, Núñez J, Bayés-Genís A, et al. Role of PCSK9 in the course of ejection fraction change after ST-segment elevation myocardial infarction: a pilot study[J]. ESC Heart Fail, 2020, 7(1): 117-122.

    [38]

    Bayes-Genis A, Núñez J, Zannad F, et al. The PCSK9-LDL Receptor Axis and Outcomes in Heart Failure: BIOSTAT-CHF Subanalysis[J]. J Am Coll Cardiol, 2017, 70(17): 2128-2136. doi: 10.1016/j.jacc.2017.08.057

    [39]

    Liu X, Yu Z, Daitoku K, et al. Human aortic valve interstitial cells obtained from patients with aortic valve stenosis are vascular endothelial growth factor receptor 2 positive and contribute to ectopic calcification[J]. J Pharmacol Sci, 2021, 145(2): 213-221. doi: 10.1016/j.jphs.2020.12.002

    [40]

    Tsamoulis D, Siountri I, Rallidis LS. Lipoprotein(a): Its Association with Calcific Aortic Valve Stenosis, the Emerging RNA-Related Treatments and the Hope for a New Era in "Treating" Aortic Valve Calcification[J]. J Cardiovasc Dev Dis, 2023, 10(3): 96. doi: 10.3390/jcdd10030096

    [41]

    Perrot N, Valerio V, Moschetta D, et al. Genetic and In Vitro Inhibition of PCSK9 and Calcific Aortic Valve Stenosis[J]. JACC Basic Transl Sci, 2020, 5(7): 649-661. doi: 10.1016/j.jacbts.2020.05.004

    [42]

    de Oliveira Sá M, Cavalcanti L, Perazzo ÁM, et al. Calcific Aortic Valve Stenosis and Atherosclerotic Calcification[J]. Curr Atheroscler Rep, 2020, 22(2): 2. doi: 10.1007/s11883-020-0821-7

    [43]

    Olsson M, Thyberg J, Nilsson J. Presence of oxidized low density lipoprotein in nonrheumatic stenotic aortic valves[J]. Arterioscler Thromb Vasc Biol, 1999, 19(5): 1218-1222. doi: 10.1161/01.ATV.19.5.1218

    [44]

    Capoulade R, Mahmut A, Tastet L, et al. Impact of plasma Lp-PLA2 activity on the progression of aortic stenosis: the PROGRESSA study[J]. JACC Cardiovasc Imaging, 2015, 8(1): 26-33. doi: 10.1016/j.jcmg.2014.09.016

    [45]

    Leopold JA. PCSK9 and Calcific Aortic Valve Stenosis: Moving Beyond Lipids[J]. JACC Basic Transl Sci, 2020, 5(7): 662-664. doi: 10.1016/j.jacbts.2020.06.004

    [46]

    Haas ME, Levenson AE, Sun X, et al, The Role of Proprotein Convertase 961 Subtilisin/Kexin Type 9 in Nephrotic Syndrome-Associated Hypercholesterolemia[J]. Circulation, 2016, 134(1): 61-72. doi: 10.1161/CIRCULATIONAHA.115.020912

    [47]

    Sundararaman SS, Döring Y, van der Vorst E. PCSK9: A Multi-Faceted Protein That Is Involved in Cardiovascular Biology[J]. Biomedicines, 2021, 9(7): 793. doi: 10.3390/biomedicines9070793

    [48]

    Berger JM, Vaillant N, Le May C, et al. PCSK9-deficiency does not alter blood pressure and sodium balance in mouse models of hypertension[J]. Atherosclerosis, 2015, 239(1): 252-259. doi: 10.1016/j.atherosclerosis.2015.01.012

  • 加载中
计量
  • 文章访问数:  855
  • PDF下载数:  70
  • 施引文献:  0
出版历程
收稿日期:  2022-08-23
刊出日期:  2023-07-13

目录