Research progress of intravascular imaging in evaluating coronary atherosclerotic plaque characteristics
-
摘要: 冠状动脉(冠脉)腔内影像学能够反映冠脉病变的严重程度、斑块性质及最小管腔直径等,帮助术者选择最佳治疗方案及介入策略。随着腔内影像分辨率的提高,其在识别冠脉斑块的各种易损特征及斑块成分中提供了更多信息,有助于早期识别高风险斑块,指导冠心病的临床治疗。现对腔内影像学在斑块性质评估中的应用研究进展进行综述。Abstract: Intravascular imaging can identify the severity of coronary artery disease, plaque characteristics, minimal lumen diameter, and so on, providing cardiovascular interventional physicians with the best treatment and intervention strategies. Thus, with the improvement of the resolution of intravascular coronary imaging, characteristics of vulnerable plaque and plaque components provide more accurate information about the lesion, identify high-risk plaque and guide the treatment of coronary heart disease. Here, we review recent advances of research progress about intravascular imaging in plaque characteristics.
-
[1] 国家心血管病中心. 中国心血管健康与疾病报告2020[M]. 北京: 科学出版社, 2021.
[2] Virmani R, Kolodgie FD, Burke AP, et al. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions[J]. Arterioscler Thromb Vasc Biol, 2000, 20(5): 1262-1275. doi: 10.1161/01.ATV.20.5.1262
[3] Bangalore S, Bhatt DL. Coronary intravascular ultrasound[J]. Circulation, 2013, 127(25): e868-874.
[4] Vengrenyuk Y, Carlier S, Xanthos S, et al. A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps[J]. Proc Natl Acad Sci U S A, 2006, 103(40): 14678-14683. doi: 10.1073/pnas.0606310103
[5] Mintz GS, Garcia-Garcia HM, Nicholls SJ, et al. Clinical expert consensus document on standards for acquisition, measurement and reporting of intravascular ultrasound regression/progression studies[J]. EuroIntervention, 2011, 6(9): 1123-1130, 1139. doi: 10.4244/EIJV6I9A195
[6] Stone GW, Maehara A, Lansky AJ, et al. A prospective natural-history study of coronary atherosclerosis[J]. N Engl J Med, 2011, 364(3): 226-235. doi: 10.1056/NEJMoa1002358
[7] Bourantas CV, Garcia-Garcia HM, Farooq V, et al. Clinical and angiographic characteristics of patients likely to have vulnerable plaques: analysis from the PROSPECT study[J]. JACC Cardiovasc Imaging, 2013, 6(12): 1263-1272. doi: 10.1016/j.jcmg.2013.04.015
[8] Xie Y, Mintz GS, Yang J, et al. Clinical outcome of nonculprit plaque ruptures in patients with acute coronary syndrome in the PROSPECT study[J]. JACC Cardiovasc Imaging, 2014, 7(4): 397-405. doi: 10.1016/j.jcmg.2013.10.010
[9] Erlinge D, Maehara A, Ben-Yehuda O, et al. Identification of vulnerable plaques and patients by intracoronary near-infrared spectroscopy and ultrasound(PROSPECT II): a prospective natural history study[J]. Lancet, 2021, 397(10278): 985-995. doi: 10.1016/S0140-6736(21)00249-X
[10] Waxman S, Dixon SR, L'Allier P, et al. In vivo validation of a catheter-based near-infrared spectroscopy system for detection of lipid core coronary plaques: initial results of the SPECTACL study[J]. JACC Cardiovasc Imaging, 2009, 2(7): 858-868. doi: 10.1016/j.jcmg.2009.05.001
[11] Kang SJ, Mintz GS, Pu J, et al. Combined IVUS and NIRS detection of fibroatheromas: histopathological validation in human coronary arteries[J]. JACC Cardiovasc Imaging, 2015, 8(2): 184-194. doi: 10.1016/j.jcmg.2014.09.021
[12] de Boer SP, Brugaletta S, Garcia-Garcia HM, et al. Determinants of high cardiovascular risk in relation to plaque-composition of a non-culprit coronary segment visualized by near-infrared spectroscopy in patients undergoing percutaneous coronary intervention[J]. Eur Heart J, 2014, 35(5): 282-289. doi: 10.1093/eurheartj/eht378
[13] Waksman R, Di Mario C, Torguson R, et al. Identification of patients and plaques vulnerable to future coronary events with near-infrared spectroscopy intravascular ultrasound imaging: a prospective, cohort study[J]. Lancet, 2019, 394(10209): 1629-1637. doi: 10.1016/S0140-6736(19)31794-5
[14] Yamamoto MH, Maehara A, Stone GW, et al. 2-Year Outcomes After Stenting of Lipid-Rich and Nonrich Coronary Plaques[J]. J Am Coll Cardiol, 2020, 75(12): 1371-1382. doi: 10.1016/j.jacc.2020.01.044
[15] Zanchin C, Ueki Y, Losdat S, et al. In vivo relationship between near-infrared spectroscopy-detected lipid-rich plaques and morphological plaque characteristics by optical coherence tomography and intravascular ultrasound: a multimodality intravascular imaging study[J]. Eur Heart J Cardiovasc Imaging, 2021, 22(7): 824-834. doi: 10.1093/ehjci/jez318
[16] Knuuti J, Wijns W, Saraste A, et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes[J]. Eur Heart J, 2020, 41(3): 407-477. doi: 10.1093/eurheartj/ehz425
[17] Stone GW, Maehara A, Ali ZA, et al. Percutaneous Coronary Intervention for Vulnerable Coronary Atherosclerotic Plaque[J]. J Am Coll Cardiol, 2020, 76(20): 2289-2301. doi: 10.1016/j.jacc.2020.09.547
[18] Tearney GJ, Regar E, Akasaka T, et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation[J]. J Am Coll Cardiol, 2012, 59(12): 1058-1072. doi: 10.1016/j.jacc.2011.09.079
[19] Räber L, Mintz GS, Koskinas KC, et al. Clinical use of intracoronary imaging. Part 1: guidance and optimization of coronary interventions. An expert consensus document of the European Association of Percutaneous Cardiovascular Interventions[J]. Eur Heart J, 2018, 39(35): 3281-3300. doi: 10.1093/eurheartj/ehy285
[20] Johnson TW, Räber L, di Mario C, et al. Clinical use of intracoronary imaging. Part 2: acute coronary syndromes, ambiguous coronary angiography findings, and guiding interventional decision-making: an expert consensus document of the European Association of Percutaneous Cardiovascular Interventions[J]. Eur Heart J, 2019, 40(31): 2566-2584. doi: 10.1093/eurheartj/ehz332
[21] Prati F, Regar E, Mintz GS, et al. Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis[J]. Eur Heart J, 2010, 31(4): 401-415. doi: 10.1093/eurheartj/ehp433
[22] Prati F, Guagliumi G, Mintz GS, et al. Expert review document part 2: methodology, terminology and clinical applications of optical coherence tomography for the assessment of interventional procedures[J]. Eur Heart J, 2012, 33(20): 2513-2520. doi: 10.1093/eurheartj/ehs095
[23] 中华医学会心血管病学分会介入心脏病学组, 心血管影像学组. 光学相干断层成像技术在冠心病介入诊疗领域的应用中国专家建议[J]. 中华心血管病杂志, 2017, 45(1): 5-12. doi: 10.3760/cma.j.issn.0253-3758.2017.01.003
[24] Alfonso F, Rivero F. Superficial Calcific Sheets: A Novel Substrate for Acute Coronary Syndromes?[J]. JACC Cardiovasc Interv, 2019, 12(6): 541-544. doi: 10.1016/j.jcin.2019.01.222
[25] Jia H, Dai J, Hou J, et al. Effective anti-thrombotic therapy without stenting: intravascular optical coherence tomography-based management in plaque erosion(the EROSION study)[J]. Eur Heart J, 2017, 38(11): 792-800.
[26] Xing L, Yamamoto E, Sugiyama T, et al. EROSION Study(Effective Anti-Thrombotic Therapy Without Stenting: Intravascular Optical Coherence Tomography-Based Management in Plaque Erosion): A 1-Year Follow-Up Report[J]. Circ Cardiovasc Interv, 2017, 10(12): e005860. . doi: 10.1161/CIRCINTERVENTIONS.117.005860
[27] Jia H, Dai J, He L, et al. EROSION III: A Multicenter RCT of OCT-Guided Reperfusion in STEMI With Early Infarct Artery Patency[J]. JACC Cardiovasc Interv, 2022, 15(8): 846-856. doi: 10.1016/j.jcin.2022.01.298
[28] Gerbaud E, Weisz G, Tanaka A, et al. Plaque burden can be assessed using intravascular optical coherence tomography and a dedicated automated processing algorithm: a comparison study with intravascular ultrasound[J]. Eur Heart J Cardiovasc Imaging, 2020, 21(6): 640-652. doi: 10.1093/ehjci/jez185
[29] Wijns W, Shite J, Jones MR, et al. Optical coherence tomography imaging during percutaneous coronary intervention impacts physician decision-making: ILUMIEN I study[J]. Eur Heart J, 2015, 36(47): 3346-3355. doi: 10.1093/eurheartj/ehv367
[30] Maehara A, Ben-Yehuda O, Ali Z, et al. Comparison of Stent Expansion Guided by Optical Coherence Tomography Versus Intravascular Ultrasound: The ILUMIEN II Study(Observational Study of Optical Coherence Tomography[OCT]in Patients Undergoing Fractional Flow Reserve[FFR]and Percutaneous Coronary Intervention)[J]. JACC Cardiovasc Interv, 2015, 8(13): 1704-1714. doi: 10.1016/j.jcin.2015.07.024
[31] Ali ZA, Maehara A, Généreux P, et al. Optical coherence tomography compared with intravascular ultrasound and with angiography to guide coronary stent implantation(ILUMIEN III: OPTIMIZE PCI): a randomised controlled trial[J]. Lancet, 2016, 388(10060): 2618-2628. doi: 10.1016/S0140-6736(16)31922-5
[32] 曾秋棠, 彭昱东. 冠状动脉功能学和腔内影像学评价进展[J]. 临床心血管病杂志, 2021, 37(5): 398-401. doi: 10.13201/j.issn.1001-1439.2021.05.002
[33] Linde JJ, Kelbæk H, Hansen TF, et al. Coronary CT Angiography in Patients With Non-ST-Segment Elevation Acute Coronary Syndrome[J]. J Am Coll Cardiol, 2020, 75(5): 453-463. doi: 10.1016/j.jacc.2019.12.012
[34] Jin HY, Weir-McCall JR, Leipsic JA, et al. The Relationship Between Coronary Calcification and the Natural History of Coronary Artery Disease[J]. JACC Cardiovasc Imaging, 2021, 14(1): 233-242. doi: 10.1016/j.jcmg.2020.08.036
[35] Monizzi G, Sonck J, Nagumo S, et al. Quantification of calcium burden by coronary CT angiography compared to optical coherence tomography[J]. Int J Cardiovasc Imaging, 2020, 36(12): 2393-2402. doi: 10.1007/s10554-020-01839-z
[36] Thieme T, Wernecke KD, Meyer R, et al. Angioscopic evaluation of atherosclerotic plaques: validation by histomorphologic analysis and association with stable and unstable coronary syndromes[J]. J Am Coll Cardiol, 1996, 28(1): 1-6.
[37] Uchida Y. Recent advances in coronary angioscopy[J]. J Cardiol, 2011, 57(1): 18-30. doi: 10.1016/j.jjcc.2010.11.001
[38] Yu W, Tanigaki T, Ding D, et al. Accuracy of Intravascular Ultrasound-Based Fractional Flow Reserve in Identifying Hemodynamic Significance of Coronary Stenosis[J]. Circ Cardiovasc Interv, 2021, 14(2): e009840. doi: 10.1161/CIRCINTERVENTIONS.120.009840
[39] Sui Y, Yang M, Xu Y, et al. Diagnostic performance of intravascular ultrasound-based fractional flow reserve versus angiography-based quantitative flow ratio measurements for evaluating left main coronary artery stenosis[J]. Catheter Cardiovasc Interv, 2022, 99 Suppl 1: 1403-1409.
[40] Huang J, Emori H, Ding D, et al. Diagnostic performance of intracoronary optical coherence tomography-based versus angiography-based fractional flow reserve for the evaluation of coronary lesions[J]. EuroIntervention, 2020, 16(7): 568-576. doi: 10.4244/EIJ-D-19-01034
[41] Chu M, Jia H, Gutiérrez-Chico JL, et al. Automatic Characterisation of Human Atherosclerotic Plaque Composition from Intravascular Optical Coherence Tomography Using Artificial Intelligence[J]. EuroIntervention, 2021, 17(1): 41-50. doi: 10.4244/EIJ-D-20-01355
[42] Farb A, Burke AP, Tang AL, et al. Coronary Plaque Erosion Without Rupture Into a Lipid Core[J]. Circulation, 1996, 93(7): 1354-1363. doi: 10.1161/01.CIR.93.7.1354
[43] Katayama Y, Tanaka A, Taruya A, et al. Feasibility and Clinical Significance of In Vivo Cholesterol Crystal Detection Using Optical Coherence Tomography[J]. Arterioscler Thromb Vasc Biol, 2020, 40(1): 220-229. doi: 10.1161/ATVBAHA.119.312934
[44] Pinilla-Echeverri N, Mehta SR, Wang J, et al. Nonculprit Lesion Plaque Morphology in Patients With ST-Segment-Elevation Myocardial Infarction: Results From the COMPLETE Trial Optical Coherence Tomography Substudys[J]. Circ Cardiovasc Interv, 2020, 13(7): e008768. doi: 10.1161/CIRCINTERVENTIONS.119.008768
[45] Mehta SR, Wood DA, Storey RF, et al. Complete Revascularization with Multivessel PCI for Myocardial Infarction[J]. N Engl J Med, 2019, 381(15): 1411-1421. doi: 10.1056/NEJMoa1907775
[46] Writing Committee Members; Lawton JS, Tamis-Holland JE, et al. 2021 ACC/AHA/SCAI Guideline for Coronary Artery Revascularization: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines[J]. J Am Coll Cardiol, 2022, 79(2): e21-e129. doi: 10.1016/j.jacc.2021.09.006
[47] Russo M, Kim HO, Kurihara O, et al. Characteristics of non-culprit plaques in acute coronary syndrome patients with layered culprit plaque[J]. Eur Heart J Cardiovasc Imaging, 2020, 21(12): 1421-1430. doi: 10.1093/ehjci/jez308
[48] Araki M, Yonetsu T, Kurihara O, et al. Predictors of Rapid Plaque Progression: An Optical Coherence Tomography Study[J]. JACC Cardiovasc Imaging, 2021, 14(8): 1628-1638. doi: 10.1016/j.jcmg.2020.08.014
[49] Kapustin AN, Shanahan CM. Calcium regulation of vascular smooth muscle cell-derived matrix vesicles[J]. Trends Cardiovasc Med, 2012, 22(5): 133-137. doi: 10.1016/j.tcm.2012.07.009
[50] Kelly-Arnold A, Maldonado N, Laudier D, et al. Revised microcalcification hypothesis for fibrous cap rupture in human coronary arteries[J]. Proc Natl Acad Sci U S A, 2013, 110(26): 10741-10746. doi: 10.1073/pnas.1308814110
[51] Otsuka F, Sakakura K, Yahagi K, et al. Has our understanding of calcification in human coronary atherosclerosis progressed?[J]. Arterioscler Thromb Vasc Biol, 2014, 34(4): 724-736. doi: 10.1161/ATVBAHA.113.302642
[52] Mori H, Torii S, Kutyna M, et al. Coronary Artery Calcification and its Progression: What Does it Really Mean?[J]. JACC Cardiovasc Imaging, 2018, 11(1): 127-142. doi: 10.1016/j.jcmg.2017.10.012
[53] Shaw LJ, Narula J, Chandrashekhar Y. The never-ending story on coronary calcium: is it predictive, punitive, or protective?[J]. J Am Coll Cardiol, 2015, 65(13): 1283-1285. doi: 10.1016/j.jacc.2015.02.024
[54] Bundy JD, Chen J, Yang W, et al. Risk factors for progression of coronary artery calcification in patients with chronic kidney disease: The CRIC study[J]. Atherosclerosis, 2018, 271: 53-60. doi: 10.1016/j.atherosclerosis.2018.02.009
[55] Yahagi K, Kolodgie FD, Lutter C, et al. Pathology of Human Coronary and Carotid Artery Atherosclerosis and Vascular Calcification in Diabetes Mellitus[J]. Arterioscler Thromb Vasc Biol, 2017, 37(2): 191-204. doi: 10.1161/ATVBAHA.116.306256
[56] Nakajima A, Araki M, Kurihara O, et al. Predictors for Rapid Progression of Coronary Calcification: An Optical Coherence Tomography Study[J]. J Am Heart Assoc, 2021, 10(3): e019235. doi: 10.1161/JAHA.120.019235
[57] Krishnamoorthy P, Vengrenyuk Y, Ueda H, et al. Three-dimensional volumetric assessment of coronary artery calcification in patients with stable coronary artery disease by OCT[J]. EuroIntervention, 2017, 13(3): 312-319. doi: 10.4244/EIJ-D-16-00139
[58] Criqui MH, Denenberg JO, Ix JH, et al. Calcium density of coronary artery plaque and risk of incident cardiovascular events[J]. JAMA, 2014, 311(3): 271-278. doi: 10.1001/jama.2013.282535
[59] Matsuhiro Y, Nakamura D, Shutta R, et al. Maximum calcium thickness is a useful predictor for acceptable stent expansion in moderate calcified lesions[J]. Int J Cardiovasc Imaging, 2020, 36(9): 1609-1615. doi: 10.1007/s10554-020-01874-w
[60] Fujino A, Mintz GS, Matsumura M, et al. A new optical coherence tomography-based calcium scoring system to predict stent underexpansion[J]. EuroIntervention, 2018, 13(18): e2182-e2189. doi: 10.4244/EIJ-D-17-00962
[61] Khalifa A, Kubo T, Ino Y, et al. Optical Coherence Tomography Comparison of Percutaneous Coronary Intervention Among Plaque Rupture, Erosion, and Calcified Nodule in Acute Myocardial Infarction[J]. Circ J, 2020, 84(6): 911-916. doi: 10.1253/circj.CJ-20-0014
计量
- 文章访问数: 1154
- PDF下载数: 1671
- 施引文献: 0