冠状动脉腔内影像学评估斑块性质的研究进展

陈心怡, 赵国力, 尹德录. 冠状动脉腔内影像学评估斑块性质的研究进展[J]. 临床心血管病杂志, 2023, 39(9): 667-673. doi: 10.13201/j.issn.1001-1439.2023.09.004
引用本文: 陈心怡, 赵国力, 尹德录. 冠状动脉腔内影像学评估斑块性质的研究进展[J]. 临床心血管病杂志, 2023, 39(9): 667-673. doi: 10.13201/j.issn.1001-1439.2023.09.004
CHEN Xinyi, ZHAO Guoli, YIN Delu. Research progress of intravascular imaging in evaluating coronary atherosclerotic plaque characteristics[J]. J Clin Cardiol, 2023, 39(9): 667-673. doi: 10.13201/j.issn.1001-1439.2023.09.004
Citation: CHEN Xinyi, ZHAO Guoli, YIN Delu. Research progress of intravascular imaging in evaluating coronary atherosclerotic plaque characteristics[J]. J Clin Cardiol, 2023, 39(9): 667-673. doi: 10.13201/j.issn.1001-1439.2023.09.004

冠状动脉腔内影像学评估斑块性质的研究进展

详细信息

Research progress of intravascular imaging in evaluating coronary atherosclerotic plaque characteristics

More Information
  • 冠状动脉(冠脉)腔内影像学能够反映冠脉病变的严重程度、斑块性质及最小管腔直径等,帮助术者选择最佳治疗方案及介入策略。随着腔内影像分辨率的提高,其在识别冠脉斑块的各种易损特征及斑块成分中提供了更多信息,有助于早期识别高风险斑块,指导冠心病的临床治疗。现对腔内影像学在斑块性质评估中的应用研究进展进行综述。
  • 加载中
  • [1]

    国家心血管病中心. 中国心血管健康与疾病报告2020[M]. 北京: 科学出版社, 2021.

    [2]

    Virmani R, Kolodgie FD, Burke AP, et al. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions[J]. Arterioscler Thromb Vasc Biol, 2000, 20(5): 1262-1275. doi: 10.1161/01.ATV.20.5.1262

    [3]

    Bangalore S, Bhatt DL. Coronary intravascular ultrasound[J]. Circulation, 2013, 127(25): e868-874.

    [4]

    Vengrenyuk Y, Carlier S, Xanthos S, et al. A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps[J]. Proc Natl Acad Sci U S A, 2006, 103(40): 14678-14683. doi: 10.1073/pnas.0606310103

    [5]

    Mintz GS, Garcia-Garcia HM, Nicholls SJ, et al. Clinical expert consensus document on standards for acquisition, measurement and reporting of intravascular ultrasound regression/progression studies[J]. EuroIntervention, 2011, 6(9): 1123-1130, 1139. doi: 10.4244/EIJV6I9A195

    [6]

    Stone GW, Maehara A, Lansky AJ, et al. A prospective natural-history study of coronary atherosclerosis[J]. N Engl J Med, 2011, 364(3): 226-235. doi: 10.1056/NEJMoa1002358

    [7]

    Bourantas CV, Garcia-Garcia HM, Farooq V, et al. Clinical and angiographic characteristics of patients likely to have vulnerable plaques: analysis from the PROSPECT study[J]. JACC Cardiovasc Imaging, 2013, 6(12): 1263-1272. doi: 10.1016/j.jcmg.2013.04.015

    [8]

    Xie Y, Mintz GS, Yang J, et al. Clinical outcome of nonculprit plaque ruptures in patients with acute coronary syndrome in the PROSPECT study[J]. JACC Cardiovasc Imaging, 2014, 7(4): 397-405. doi: 10.1016/j.jcmg.2013.10.010

    [9]

    Erlinge D, Maehara A, Ben-Yehuda O, et al. Identification of vulnerable plaques and patients by intracoronary near-infrared spectroscopy and ultrasound(PROSPECT II): a prospective natural history study[J]. Lancet, 2021, 397(10278): 985-995. doi: 10.1016/S0140-6736(21)00249-X

    [10]

    Waxman S, Dixon SR, L'Allier P, et al. In vivo validation of a catheter-based near-infrared spectroscopy system for detection of lipid core coronary plaques: initial results of the SPECTACL study[J]. JACC Cardiovasc Imaging, 2009, 2(7): 858-868. doi: 10.1016/j.jcmg.2009.05.001

    [11]

    Kang SJ, Mintz GS, Pu J, et al. Combined IVUS and NIRS detection of fibroatheromas: histopathological validation in human coronary arteries[J]. JACC Cardiovasc Imaging, 2015, 8(2): 184-194. doi: 10.1016/j.jcmg.2014.09.021

    [12]

    de Boer SP, Brugaletta S, Garcia-Garcia HM, et al. Determinants of high cardiovascular risk in relation to plaque-composition of a non-culprit coronary segment visualized by near-infrared spectroscopy in patients undergoing percutaneous coronary intervention[J]. Eur Heart J, 2014, 35(5): 282-289. doi: 10.1093/eurheartj/eht378

    [13]

    Waksman R, Di Mario C, Torguson R, et al. Identification of patients and plaques vulnerable to future coronary events with near-infrared spectroscopy intravascular ultrasound imaging: a prospective, cohort study[J]. Lancet, 2019, 394(10209): 1629-1637. doi: 10.1016/S0140-6736(19)31794-5

    [14]

    Yamamoto MH, Maehara A, Stone GW, et al. 2-Year Outcomes After Stenting of Lipid-Rich and Nonrich Coronary Plaques[J]. J Am Coll Cardiol, 2020, 75(12): 1371-1382. doi: 10.1016/j.jacc.2020.01.044

    [15]

    Zanchin C, Ueki Y, Losdat S, et al. In vivo relationship between near-infrared spectroscopy-detected lipid-rich plaques and morphological plaque characteristics by optical coherence tomography and intravascular ultrasound: a multimodality intravascular imaging study[J]. Eur Heart J Cardiovasc Imaging, 2021, 22(7): 824-834. doi: 10.1093/ehjci/jez318

    [16]

    Knuuti J, Wijns W, Saraste A, et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes[J]. Eur Heart J, 2020, 41(3): 407-477. doi: 10.1093/eurheartj/ehz425

    [17]

    Stone GW, Maehara A, Ali ZA, et al. Percutaneous Coronary Intervention for Vulnerable Coronary Atherosclerotic Plaque[J]. J Am Coll Cardiol, 2020, 76(20): 2289-2301. doi: 10.1016/j.jacc.2020.09.547

    [18]

    Tearney GJ, Regar E, Akasaka T, et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation[J]. J Am Coll Cardiol, 2012, 59(12): 1058-1072. doi: 10.1016/j.jacc.2011.09.079

    [19]

    Räber L, Mintz GS, Koskinas KC, et al. Clinical use of intracoronary imaging. Part 1: guidance and optimization of coronary interventions. An expert consensus document of the European Association of Percutaneous Cardiovascular Interventions[J]. Eur Heart J, 2018, 39(35): 3281-3300. doi: 10.1093/eurheartj/ehy285

    [20]

    Johnson TW, Räber L, di Mario C, et al. Clinical use of intracoronary imaging. Part 2: acute coronary syndromes, ambiguous coronary angiography findings, and guiding interventional decision-making: an expert consensus document of the European Association of Percutaneous Cardiovascular Interventions[J]. Eur Heart J, 2019, 40(31): 2566-2584. doi: 10.1093/eurheartj/ehz332

    [21]

    Prati F, Regar E, Mintz GS, et al. Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis[J]. Eur Heart J, 2010, 31(4): 401-415. doi: 10.1093/eurheartj/ehp433

    [22]

    Prati F, Guagliumi G, Mintz GS, et al. Expert review document part 2: methodology, terminology and clinical applications of optical coherence tomography for the assessment of interventional procedures[J]. Eur Heart J, 2012, 33(20): 2513-2520. doi: 10.1093/eurheartj/ehs095

    [23]

    中华医学会心血管病学分会介入心脏病学组, 心血管影像学组. 光学相干断层成像技术在冠心病介入诊疗领域的应用中国专家建议[J]. 中华心血管病杂志, 2017, 45(1): 5-12. doi: 10.3760/cma.j.issn.0253-3758.2017.01.003

    [24]

    Alfonso F, Rivero F. Superficial Calcific Sheets: A Novel Substrate for Acute Coronary Syndromes?[J]. JACC Cardiovasc Interv, 2019, 12(6): 541-544. doi: 10.1016/j.jcin.2019.01.222

    [25]

    Jia H, Dai J, Hou J, et al. Effective anti-thrombotic therapy without stenting: intravascular optical coherence tomography-based management in plaque erosion(the EROSION study)[J]. Eur Heart J, 2017, 38(11): 792-800.

    [26]

    Xing L, Yamamoto E, Sugiyama T, et al. EROSION Study(Effective Anti-Thrombotic Therapy Without Stenting: Intravascular Optical Coherence Tomography-Based Management in Plaque Erosion): A 1-Year Follow-Up Report[J]. Circ Cardiovasc Interv, 2017, 10(12): e005860. . doi: 10.1161/CIRCINTERVENTIONS.117.005860

    [27]

    Jia H, Dai J, He L, et al. EROSION III: A Multicenter RCT of OCT-Guided Reperfusion in STEMI With Early Infarct Artery Patency[J]. JACC Cardiovasc Interv, 2022, 15(8): 846-856. doi: 10.1016/j.jcin.2022.01.298

    [28]

    Gerbaud E, Weisz G, Tanaka A, et al. Plaque burden can be assessed using intravascular optical coherence tomography and a dedicated automated processing algorithm: a comparison study with intravascular ultrasound[J]. Eur Heart J Cardiovasc Imaging, 2020, 21(6): 640-652. doi: 10.1093/ehjci/jez185

    [29]

    Wijns W, Shite J, Jones MR, et al. Optical coherence tomography imaging during percutaneous coronary intervention impacts physician decision-making: ILUMIEN I study[J]. Eur Heart J, 2015, 36(47): 3346-3355. doi: 10.1093/eurheartj/ehv367

    [30]

    Maehara A, Ben-Yehuda O, Ali Z, et al. Comparison of Stent Expansion Guided by Optical Coherence Tomography Versus Intravascular Ultrasound: The ILUMIEN II Study(Observational Study of Optical Coherence Tomography[OCT]in Patients Undergoing Fractional Flow Reserve[FFR]and Percutaneous Coronary Intervention)[J]. JACC Cardiovasc Interv, 2015, 8(13): 1704-1714. doi: 10.1016/j.jcin.2015.07.024

    [31]

    Ali ZA, Maehara A, Généreux P, et al. Optical coherence tomography compared with intravascular ultrasound and with angiography to guide coronary stent implantation(ILUMIEN III: OPTIMIZE PCI): a randomised controlled trial[J]. Lancet, 2016, 388(10060): 2618-2628. doi: 10.1016/S0140-6736(16)31922-5

    [32]

    曾秋棠, 彭昱东. 冠状动脉功能学和腔内影像学评价进展[J]. 临床心血管病杂志, 2021, 37(5): 398-401. doi: 10.13201/j.issn.1001-1439.2021.05.002

    [33]

    Linde JJ, Kelbæk H, Hansen TF, et al. Coronary CT Angiography in Patients With Non-ST-Segment Elevation Acute Coronary Syndrome[J]. J Am Coll Cardiol, 2020, 75(5): 453-463. doi: 10.1016/j.jacc.2019.12.012

    [34]

    Jin HY, Weir-McCall JR, Leipsic JA, et al. The Relationship Between Coronary Calcification and the Natural History of Coronary Artery Disease[J]. JACC Cardiovasc Imaging, 2021, 14(1): 233-242. doi: 10.1016/j.jcmg.2020.08.036

    [35]

    Monizzi G, Sonck J, Nagumo S, et al. Quantification of calcium burden by coronary CT angiography compared to optical coherence tomography[J]. Int J Cardiovasc Imaging, 2020, 36(12): 2393-2402. doi: 10.1007/s10554-020-01839-z

    [36]

    Thieme T, Wernecke KD, Meyer R, et al. Angioscopic evaluation of atherosclerotic plaques: validation by histomorphologic analysis and association with stable and unstable coronary syndromes[J]. J Am Coll Cardiol, 1996, 28(1): 1-6.

    [37]

    Uchida Y. Recent advances in coronary angioscopy[J]. J Cardiol, 2011, 57(1): 18-30. doi: 10.1016/j.jjcc.2010.11.001

    [38]

    Yu W, Tanigaki T, Ding D, et al. Accuracy of Intravascular Ultrasound-Based Fractional Flow Reserve in Identifying Hemodynamic Significance of Coronary Stenosis[J]. Circ Cardiovasc Interv, 2021, 14(2): e009840. doi: 10.1161/CIRCINTERVENTIONS.120.009840

    [39]

    Sui Y, Yang M, Xu Y, et al. Diagnostic performance of intravascular ultrasound-based fractional flow reserve versus angiography-based quantitative flow ratio measurements for evaluating left main coronary artery stenosis[J]. Catheter Cardiovasc Interv, 2022, 99 Suppl 1: 1403-1409.

    [40]

    Huang J, Emori H, Ding D, et al. Diagnostic performance of intracoronary optical coherence tomography-based versus angiography-based fractional flow reserve for the evaluation of coronary lesions[J]. EuroIntervention, 2020, 16(7): 568-576. doi: 10.4244/EIJ-D-19-01034

    [41]

    Chu M, Jia H, Gutiérrez-Chico JL, et al. Automatic Characterisation of Human Atherosclerotic Plaque Composition from Intravascular Optical Coherence Tomography Using Artificial Intelligence[J]. EuroIntervention, 2021, 17(1): 41-50. doi: 10.4244/EIJ-D-20-01355

    [42]

    Farb A, Burke AP, Tang AL, et al. Coronary Plaque Erosion Without Rupture Into a Lipid Core[J]. Circulation, 1996, 93(7): 1354-1363. doi: 10.1161/01.CIR.93.7.1354

    [43]

    Katayama Y, Tanaka A, Taruya A, et al. Feasibility and Clinical Significance of In Vivo Cholesterol Crystal Detection Using Optical Coherence Tomography[J]. Arterioscler Thromb Vasc Biol, 2020, 40(1): 220-229. doi: 10.1161/ATVBAHA.119.312934

    [44]

    Pinilla-Echeverri N, Mehta SR, Wang J, et al. Nonculprit Lesion Plaque Morphology in Patients With ST-Segment-Elevation Myocardial Infarction: Results From the COMPLETE Trial Optical Coherence Tomography Substudys[J]. Circ Cardiovasc Interv, 2020, 13(7): e008768. doi: 10.1161/CIRCINTERVENTIONS.119.008768

    [45]

    Mehta SR, Wood DA, Storey RF, et al. Complete Revascularization with Multivessel PCI for Myocardial Infarction[J]. N Engl J Med, 2019, 381(15): 1411-1421. doi: 10.1056/NEJMoa1907775

    [46]

    Writing Committee Members; Lawton JS, Tamis-Holland JE, et al. 2021 ACC/AHA/SCAI Guideline for Coronary Artery Revascularization: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines[J]. J Am Coll Cardiol, 2022, 79(2): e21-e129. doi: 10.1016/j.jacc.2021.09.006

    [47]

    Russo M, Kim HO, Kurihara O, et al. Characteristics of non-culprit plaques in acute coronary syndrome patients with layered culprit plaque[J]. Eur Heart J Cardiovasc Imaging, 2020, 21(12): 1421-1430. doi: 10.1093/ehjci/jez308

    [48]

    Araki M, Yonetsu T, Kurihara O, et al. Predictors of Rapid Plaque Progression: An Optical Coherence Tomography Study[J]. JACC Cardiovasc Imaging, 2021, 14(8): 1628-1638. doi: 10.1016/j.jcmg.2020.08.014

    [49]

    Kapustin AN, Shanahan CM. Calcium regulation of vascular smooth muscle cell-derived matrix vesicles[J]. Trends Cardiovasc Med, 2012, 22(5): 133-137. doi: 10.1016/j.tcm.2012.07.009

    [50]

    Kelly-Arnold A, Maldonado N, Laudier D, et al. Revised microcalcification hypothesis for fibrous cap rupture in human coronary arteries[J]. Proc Natl Acad Sci U S A, 2013, 110(26): 10741-10746. doi: 10.1073/pnas.1308814110

    [51]

    Otsuka F, Sakakura K, Yahagi K, et al. Has our understanding of calcification in human coronary atherosclerosis progressed?[J]. Arterioscler Thromb Vasc Biol, 2014, 34(4): 724-736. doi: 10.1161/ATVBAHA.113.302642

    [52]

    Mori H, Torii S, Kutyna M, et al. Coronary Artery Calcification and its Progression: What Does it Really Mean?[J]. JACC Cardiovasc Imaging, 2018, 11(1): 127-142. doi: 10.1016/j.jcmg.2017.10.012

    [53]

    Shaw LJ, Narula J, Chandrashekhar Y. The never-ending story on coronary calcium: is it predictive, punitive, or protective?[J]. J Am Coll Cardiol, 2015, 65(13): 1283-1285. doi: 10.1016/j.jacc.2015.02.024

    [54]

    Bundy JD, Chen J, Yang W, et al. Risk factors for progression of coronary artery calcification in patients with chronic kidney disease: The CRIC study[J]. Atherosclerosis, 2018, 271: 53-60. doi: 10.1016/j.atherosclerosis.2018.02.009

    [55]

    Yahagi K, Kolodgie FD, Lutter C, et al. Pathology of Human Coronary and Carotid Artery Atherosclerosis and Vascular Calcification in Diabetes Mellitus[J]. Arterioscler Thromb Vasc Biol, 2017, 37(2): 191-204. doi: 10.1161/ATVBAHA.116.306256

    [56]

    Nakajima A, Araki M, Kurihara O, et al. Predictors for Rapid Progression of Coronary Calcification: An Optical Coherence Tomography Study[J]. J Am Heart Assoc, 2021, 10(3): e019235. doi: 10.1161/JAHA.120.019235

    [57]

    Krishnamoorthy P, Vengrenyuk Y, Ueda H, et al. Three-dimensional volumetric assessment of coronary artery calcification in patients with stable coronary artery disease by OCT[J]. EuroIntervention, 2017, 13(3): 312-319. doi: 10.4244/EIJ-D-16-00139

    [58]

    Criqui MH, Denenberg JO, Ix JH, et al. Calcium density of coronary artery plaque and risk of incident cardiovascular events[J]. JAMA, 2014, 311(3): 271-278. doi: 10.1001/jama.2013.282535

    [59]

    Matsuhiro Y, Nakamura D, Shutta R, et al. Maximum calcium thickness is a useful predictor for acceptable stent expansion in moderate calcified lesions[J]. Int J Cardiovasc Imaging, 2020, 36(9): 1609-1615. doi: 10.1007/s10554-020-01874-w

    [60]

    Fujino A, Mintz GS, Matsumura M, et al. A new optical coherence tomography-based calcium scoring system to predict stent underexpansion[J]. EuroIntervention, 2018, 13(18): e2182-e2189. doi: 10.4244/EIJ-D-17-00962

    [61]

    Khalifa A, Kubo T, Ino Y, et al. Optical Coherence Tomography Comparison of Percutaneous Coronary Intervention Among Plaque Rupture, Erosion, and Calcified Nodule in Acute Myocardial Infarction[J]. Circ J, 2020, 84(6): 911-916. doi: 10.1253/circj.CJ-20-0014

  • 加载中
计量
  • 文章访问数:  833
  • PDF下载数:  673
  • 施引文献:  0
出版历程
收稿日期:  2022-09-26
刊出日期:  2023-09-13

目录