嵌合抗原受体T细胞治疗心肌病理性纤维化研究进展

付方方, 陈欣, 邢璐宇. 嵌合抗原受体T细胞治疗心肌病理性纤维化研究进展[J]. 临床心血管病杂志, 2023, 39(9): 734-737. doi: 10.13201/j.issn.1001-1439.2023.09.014
引用本文: 付方方, 陈欣, 邢璐宇. 嵌合抗原受体T细胞治疗心肌病理性纤维化研究进展[J]. 临床心血管病杂志, 2023, 39(9): 734-737. doi: 10.13201/j.issn.1001-1439.2023.09.014
FU Fangfang, CHEN Xin, XING Luyu. Research progress of chimeric antigen receptor T-cells in the treatment of myocardial pathological fibrosis[J]. J Clin Cardiol, 2023, 39(9): 734-737. doi: 10.13201/j.issn.1001-1439.2023.09.014
Citation: FU Fangfang, CHEN Xin, XING Luyu. Research progress of chimeric antigen receptor T-cells in the treatment of myocardial pathological fibrosis[J]. J Clin Cardiol, 2023, 39(9): 734-737. doi: 10.13201/j.issn.1001-1439.2023.09.014

嵌合抗原受体T细胞治疗心肌病理性纤维化研究进展

详细信息

Research progress of chimeric antigen receptor T-cells in the treatment of myocardial pathological fibrosis

More Information
  • 嵌合抗原受体(chimeric antigen receptor,CAR)T细胞疗法是二十一世纪的突破性疗法,主要用于治疗包括淋巴瘤和白血病在内的不同恶性肿瘤。过度的心肌纤维化是各种形式的心脏病和心力衰竭进展的一个重要因素。然而,针对纤维化的临床干预和治疗仍然有限。虽然目前没有直接治疗心肌纤维化的疗法,但最近的一项研究已经展示了一种潜在的新策略,即采用CAR-T细胞进行工程改造从而特异性地消融活化的成纤维细胞以显著改善心肌纤维化并改善心脏功能。本文综述了目前CAR-T细胞治疗心肌纤维化的现况及CAR-T细胞疗法技术优化和应用的前景。
  • 加载中
  • [1]

    Yu JX, Upadhaya S, Tatake R, et al. Cancer cell therapies: the clinical trial landscape[J]. Nat Rev Drug Discov, 2020, 19(9): 583-584. doi: 10.1038/d41573-020-00099-9

    [2]

    Roselli E, Faramand R, Davila ML. Insight into next-generation CAR therapeutics: designing CAR T cells to improve clinical outcomes[J]. J Clin Invest, 2021, 131(2): e142030. doi: 10.1172/JCI142030

    [3]

    Lin H, Cheng J, Mu W, et al. Advances in Universal CAR-T Cell Therapy[J]. Front Immunol, 2021, 12: 744823. doi: 10.3389/fimmu.2021.744823

    [4]

    Maruyama K, Imanaka-Yoshida K. The Pathogenesis of Cardiac Fibrosis: A Review of Recent Progress[J]. Int J Mol Sci, 2022, 23(5): 2617. doi: 10.3390/ijms23052617

    [5]

    Rurik JG, Tombácz I, Yadegari A, et al. CAR T cells produced in vivo to treat cardiac injury[J]. Science, 2022, 375(6576): 91-96. doi: 10.1126/science.abm0594

    [6]

    Liu M, López de Juan Abad B, Cheng K. Cardiac fibrosis: Myofibroblast-mediated pathological regulation and drug delivery strategies[J]. Adv Drug Deliv Rev, 2021, 173: 504-519. doi: 10.1016/j.addr.2021.03.021

    [7]

    López B, Ravassa S, Moreno MU, et al. Diffuse myocardial fibrosis: mechanisms, diagnosis and therapeutic approaches[J]. Nat Rev Cardiol, 2021, 18(7): 479-498. doi: 10.1038/s41569-020-00504-1

    [8]

    Han D, Xu Z, Zhuang Y, et al. Current Progress in CAR-T Cell Therapy for Hematological Malignancies[J]. J Cancer, 2021, 12(2): 326-334. doi: 10.7150/jca.48976

    [9]

    Kirk T, Ahmed A, Rognoni E. Fibroblast Memory in Development, Homeostasis and Disease[J]. Cells, 2021, 10(11): 2840. doi: 10.3390/cells10112840

    [10]

    Dixon I, Landry NM, Rattan SG. Periostin Reexpression in Heart Disease Contributes to Cardiac Interstitial Remodeling by Supporting the Cardiac Myofibroblast Phenotype[J]. Adv Exp Med Biol, 2019, 1132: 35-41.

    [11]

    Aghajanian H, Kimura T, Rurik JG, et al. Targeting cardiac fibrosis with engineered T cells[J]. Nature, 2019, 573(7774): 430-433. doi: 10.1038/s41586-019-1546-z

    [12]

    Jokar N, Amini A, Ravanbod M, et al. State-of-the-art modalities in cardio-oncology: insight from a nuclear medicine approach[J]. Nucl Med Rev Cent East Eur, 2021, 24(2): 82-92. doi: 10.5603/NMR.2021.0019

    [13]

    Toms J, Kogler J, Maschauer S, et al. Targeting Fibroblast Activation Protein: Radiosynthesis and Preclinical Evaluation of an 18F-Labeled FAP Inhibitor[J]. J Nucl Med, 2020, 61(12): 1806-1813. doi: 10.2967/jnumed.120.242958

    [14]

    Wu M, Ning J, Li J, et al. Feasibility of In Vivo Imaging of Fibroblast Activation Protein in Human Arterial Walls[J]. J Nucl Med, 2022, 63(6): 948-951. doi: 10.2967/jnumed.121.262863

    [15]

    Fitzgerald AA, Weiner LM. The role of fibroblast activation protein in health and malignancy[J]. Cancer Metastasis Rev, 2020, 39(3): 783-803. doi: 10.1007/s10555-020-09909-3

    [16]

    Tallquist MD, Molkentin JD. Redefining the identity of cardiac fibroblasts[J]. Nat Rev Cardiol, 2017, 14(8): 484-491. doi: 10.1038/nrcardio.2017.57

    [17]

    Hoffmann DB, Fraccarollo D, Galuppo P, et al. Genetic ablation of fibroblast activation protein alpha attenuates left ventricular dilation after myocardial infarction[J]. PLoS One, 2021, 16(3): e0248196. doi: 10.1371/journal.pone.0248196

    [18]

    Picchio V, Bordin A, Floris E, et al. The dynamic facets of the cardiac stroma: from classical markers to omics and translational perspectives[J]. Am J Transl Res, 2022, 14(2): 1172-1187.

    [19]

    Trinh K, Julovi SM, Rogers NM. The Role of Matrix Proteins in Cardiac Pathology[J]. Int J Mol Sci, 2022, 23(3): 1338. doi: 10.3390/ijms23031338

    [20]

    Xiang FL, Fang M, Yutzey KE. Loss of β-catenin in resident cardiac fibroblasts attenuates fibrosis induced by pressure overload in mice[J]. Nat Commun, 2017, 8(1): 712. doi: 10.1038/s41467-017-00840-w

    [21]

    Griffin MF, desJardins-Park HE, Mascharak S, et al. Understanding the impact of fibroblast heterogeneity on skin fibrosis[J]. Dis Model Mech, 2020, 13(6): dmm044164. doi: 10.1242/dmm.044164

    [22]

    Gao TA, Chen YY. T cells to fix a broken heart[J]. Science, 2022, 375(6576): 23-24. doi: 10.1126/science.abn0851

    [23]

    Schubert ML, Schmitt M, Wang L, et al. Side-effect management of chimeric antigen receptor(CAR)T-cell therapy[J]. Ann Oncol, 2021, 32(1): 34-48. doi: 10.1016/j.annonc.2020.10.478

    [24]

    Fischer JW, Bhattarai N. CAR-T Cell Therapy: Mechanism, Management, and Mitigation of Inflammatory Toxicities[J]. Front Immunol, 2021, 12: 693016. doi: 10.3389/fimmu.2021.693016

    [25]

    Adamo L, Rocha-Resende C, Prabhu SD, et al. Reappraising the role of inflammation in heart failure[J]. Nat Rev Cardiol, 2020, 17(5): 269-285. doi: 10.1038/s41569-019-0315-x

    [26]

    Giavridis T, van der Stegen S, Eyquem J, et al. CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade[J]. Nat Med, 2018, 24(6): 731-738. doi: 10.1038/s41591-018-0041-7

    [27]

    Derrick CJ, Noёl ES. The ECM as a driver of heart development and repair[J]. Development, 2021, 148(5): dev191320. doi: 10.1242/dev.191320

    [28]

    Hortells L, Johansen A, Yutzey KE. Cardiac Fibroblasts and the Extracellular Matrix in Regenerative and Nonregenerative Hearts[J]. J Cardiovasc Dev Dis, 2019, 6(3): 29.

    [29]

    Chen B, Frangogiannis NG. Chemokines in Myocardial Infarction[J]. J Cardiovasc Transl Res, 2021, 14(1): 35-52. doi: 10.1007/s12265-020-10006-7

    [30]

    Gencer S, Evans BR, van der Vorst E, et al. Inflammatory Chemokines in Atherosclerosis[J]. Cells, 2021, 10(2): 226. doi: 10.3390/cells10020226

    [31]

    Liu G, Rui W, Zheng H, et al. CXCR2-modified CAR-T cells have enhanced trafficking ability that improves treatment of hepatocellular carcinoma[J]. Eur J Immunol, 2020, 50(5): 712-724. doi: 10.1002/eji.201948457

  • 加载中
计量
  • 文章访问数:  1382
  • PDF下载数:  471
  • 施引文献:  0
出版历程
收稿日期:  2022-09-26
刊出日期:  2023-09-13

目录