血管紧张素转换酶2在动脉粥样硬化中的研究进展

潘红波, 李明杰, 满雨楠, 等. 血管紧张素转换酶2在动脉粥样硬化中的研究进展[J]. 临床心血管病杂志, 2023, 39(12): 972-976. doi: 10.13201/j.issn.1001-1439.2023.12.013
引用本文: 潘红波, 李明杰, 满雨楠, 等. 血管紧张素转换酶2在动脉粥样硬化中的研究进展[J]. 临床心血管病杂志, 2023, 39(12): 972-976. doi: 10.13201/j.issn.1001-1439.2023.12.013
PAN Hongbo, LI Mingjie, MAN Yu'nan, et al. Progress in angiotensin converting enzyme 2 in atherosclerosis[J]. J Clin Cardiol, 2023, 39(12): 972-976. doi: 10.13201/j.issn.1001-1439.2023.12.013
Citation: PAN Hongbo, LI Mingjie, MAN Yu'nan, et al. Progress in angiotensin converting enzyme 2 in atherosclerosis[J]. J Clin Cardiol, 2023, 39(12): 972-976. doi: 10.13201/j.issn.1001-1439.2023.12.013

血管紧张素转换酶2在动脉粥样硬化中的研究进展

  • 基金项目:
    广西壮族自治区卫生健康委员会自筹经费科研项目(No:Z-A20220405、Z-A20220404)
详细信息

Progress in angiotensin converting enzyme 2 in atherosclerosis

More Information
  • 血管紧张素转换酶2(ACE2)在人体组织中普遍存在,特别是心血管系统。ACE2的生理功能之一是将血管紧张素-Ⅱ(Ang-Ⅱ)转化为血管紧张素1~7(Ang-1~7),并在抑制动脉粥样硬化的形成中起到关键作用,但是单凭这一学说无法完全揭示其背后的作用机制,有必要从更多的角度去深入了解ACE2。因此本文就ACE2在动脉粥样硬化中的研究进展作一综述。
  • 加载中
  • 图 1  ACE2在动脉粥样硬化中作用示意图

    Figure 1.  ACE2 in atherosclerosis

  • [1]

    Roth GA, MeNSAH GA, Johnson CO, et al. Global burden of cardiovascular diseases and risk factors, 1990-2019: Update From the GBD 2019 Study[J]. J Am Coll Cardiol, 2020, 76(25): 2982-3021. doi: 10.1016/j.jacc.2020.11.010

    [2]

    Jebari-Benslaiman S, Galicia-García U, Larrea-Sebal A, et al. Pathophysiology of Atherosclerosis[J]. Int J Mol Sci, 2022, 23(6): 110.

    [3]

    Mogi M. Effect of renin-angiotensin system on senescence[J]. Geriatr Gerontol Int, 2020, 20(6): 520-525. doi: 10.1111/ggi.13927

    [4]

    Gheblawi M, Wang K, Viveiros A, et al. Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System: Celebrating the 20th Anniversary of the Discovery of ACE2[J]. Circ Res, 2020, 126(10): 1456-1474. doi: 10.1161/CIRCRESAHA.120.317015

    [5]

    Poznyak AV, Bezsonov EE, Eid AH, et al. ACE2 Is an Adjacent Element of Atherosclerosis and COVID-19 Pathogenesis[J]. Int J Mol Sci, 2021, 22(9): 110.

    [6]

    Bhushan S, Xiao Z, Gao K, et al. Role and Interaction Between ACE1, ACE2 and Their Related Genes in Cardiovascular Disorders[J]. Curr Probl Cardiol, 2023, 48(8): 101162. doi: 10.1016/j.cpcardiol.2022.101162

    [7]

    Liao W, Wu J. The ACE2/Ang(1-7)/MasR axis as an emerging target for antihypertensive peptides[J]. Crit Rev Food Sci Nutr, 2021, 61(15): 2572-2586. doi: 10.1080/10408398.2020.1781049

    [8]

    Silva GM, França-Falcão MS, Calzerra N, et al. Role of renin-angiotensin system components in atherosclerosis: focus on Ang-Ⅱ, ACE2, and Ang-1-7[J]. Front Physiol, 2020, 11: 1067. doi: 10.3389/fphys.2020.01067

    [9]

    Li Z, Wang K, Ji X, et al. ACE2 suppresses the inflammatory response in LPS-induced porcine intestinal epithelial cells via regulating the NF-κB and MAPK pathways[J]. Peptides, 2022, 149: 170717. doi: 10.1016/j.peptides.2021.170717

    [10]

    Djomkam A, Olwal CO, Sala TB, et al. Commentary: SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor[J]. Front Oncol, 2020, 10: 1448. doi: 10.3389/fonc.2020.01448

    [11]

    Fan J, Watanabe T. Atherosclerosis: Known and unknown[J]. Pathol Int, 2022, 72(3): 151-160. doi: 10.1111/pin.13202

    [12]

    Jung SH, Lee KT. Atherosclerosis by Virus Infection-A Short Review[J]. Biomedicines, 2022, 10(10): 110.

    [13]

    Ranković I, Milivojević V, Pavlović Marković A, et al. Interplay between chronic hepatitis B and atherosclerosis: Innovative perspectives and theories[J]. World J Gastroenterol, 2022, 28(4): 497-499. doi: 10.3748/wjg.v28.i4.497

    [14]

    Shi Y, Tokunaga O. Herpesvirus(HSV-1, EBV and CMV)infections in atherosclerotic compared with non-atherosclerotic aortic tissue[J]. Pathol Int, 2002, 52(1): 31-39. doi: 10.1046/j.1440-1827.2002.01312.x

    [15]

    Wu YP, Sun DD, Wang Y, et al. Herpes Simplex Virus Type 1 and Type 2 Infection Increases Atherosclerosis Risk: Evidence Based on a Meta-Analysis[J]. Biomed Res Int, 2016, 2016: 2630865.

    [16]

    Lo J, Abbara S, Shturman L, et al. Increased prevalence of subclinical coronary atherosclerosis detected by coronary computed tomography angiography in HIV-infected men[J]. AIDS, 2010, 24(2): 243-253. doi: 10.1097/QAD.0b013e328333ea9e

    [17]

    Liu Y, Zhang HG. Vigilance on New-Onset Atherosclerosis Following SARS-CoV-2 Infection[J]. Front Med(Lausanne), 2020, 7: 629413.

    [18]

    Zheng YY, Ma YT, Zhang JY, et al. COVID-19 and the cardiovascular system[J]. Nat Rev Cardiol, 2020, 17(5): 259-260. doi: 10.1038/s41569-020-0360-5

    [19]

    Tabas I, Lichtman AH. Monocyte-Macrophages and T Cells in Atherosclerosis[J]. Immunity, 2017, 47(4): 621-634. doi: 10.1016/j.immuni.2017.09.008

    [20]

    Sima P, Vannucci L, Vetvicka V. Atherosclerosis as autoimmune disease[J]. Ann Transl Med, 2018, 6(7): 116. doi: 10.21037/atm.2018.02.02

    [21]

    Vinciguerra M, Romiti S, Fattouch K, et al. Atherosclerosis as Pathogenetic Substrate for Sars-Cov2 Cytokine Storm[J]. J Clin Med, 2020, 9(7): 110.

    [22]

    Vassiliou AG, Zacharis A, Keskinidou C, et al. Soluble Angiotensin Converting Enzyme 2(ACE2) Is Upregulated and Soluble Endothelial Nitric Oxide Synthase(eNOS)Is Downregulated in COVID-19-induced Acute Respiratory Distress Syndrome(ARDS)[J]. Pharmaceuticals(Basel), 2021, 14(7): 110.

    [23]

    Zhang Y, Yan R, Zhou Q. ACE2, B0AT1, and SARS-CoV-2 spike protein: Structural and functional implications[J]. Curr Opin Struct Biol, 2022, 74: 102388. doi: 10.1016/j.sbi.2022.102388

    [24]

    Wang J, Zhao H, An Y. ACE2 Shedding and the Role in COVID-19[J]. Front Cell Infect Microbiol, 2021, 11: 789180.

    [25]

    Sardu C, Gambardella J, Morelli MB, et al. Hypertension, Thrombosis, Kidney Failure, and Diabetes: Is COVID-19 an Endothelial Disease? A Comprehensive Evaluation of Clinical and Basic Evidence[J]. J Clin Med, 2020, 9(5): 110.

    [26]

    Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19[J]. N Engl J Med, 2020, 383(2): 120-128. doi: 10.1056/NEJMoa2015432

    [27]

    Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19[J]. Lancet, 2020, 395(10234): 1417-1418. doi: 10.1016/S0140-6736(20)30937-5

    [28]

    Colmenero I, Santonja C, Alonso-Riaño M, et al. SARS-CoV-2 endothelial infection causes COVID-19 chilblains: histopathological, immunohistochemical and ultrastructural study of seven paediatric cases[J]. Br J Dermatol, 2020, 183(4): 729-737. doi: 10.1111/bjd.19327

    [29]

    Monteil V, Kwon H, Prado P, et al. Inhibition of SARS-CoV-2 Infections in Engineered Human Tissues Using Clinical-Grade Soluble Human ACE2[J]. Cell, 2020, 181(4): 905-913.e7. doi: 10.1016/j.cell.2020.04.004

    [30]

    Klh fek J. The role of angiotensin-converting enzyme 2 in the pathogenesis of COVID-19: the villain or the hero?[J]. Acta Clin Belg, 2022, 77(1): 211-218. doi: 10.1080/17843286.2020.1786324

    [31]

    Panni S, Lovering RC, Porras P, et al. Non-coding RNA regulatory networks[J]. Biochim Biophys Acta Gene Regul Mech, 2020, 1863(6): 194417. doi: 10.1016/j.bbagrm.2019.194417

    [32]

    Gu Q, Wang B, Zhang XF, et al. Contribution of renin-angiotensin system to exercise-induced attenuation of aortic remodeling and improvement of endothelial function in spontaneously hypertensive rats[J]. Cardiovasc Pathol, 2014, 23(5): 298-305. doi: 10.1016/j.carpath.2014.05.006

    [33]

    Yang JM, Dong M, Meng X, et al. Angiotensin-(1-7) dose-dependently inhibits atherosclerotic lesion formation and enhances plaque stability by targeting vascular cells[J]. Arterioscler Thromb Vasc Biol, 2013, 33(8): 1978-1985. doi: 10.1161/ATVBAHA.113.301320

    [34]

    Wang HJ, Lo WY, Lin LJ. Angiotensin-(1-7) decreases glycated albumin-induced endothelial interleukin-6 expression via modulation of miR-146a[J]. Biochem Biophys Res Commun, 2013, 430(3): 1157-1163. doi: 10.1016/j.bbrc.2012.12.018

    [35]

    Trojanowicz B, Imdahl T, Ulrich C, et al. Circulating miR-421 Targeting Leucocytic Angiotensin Converting Enzyme 2 Is Elevated in Patients with Chronic Kidney Disease[J]. Nephron, 2019, 141(1): 61-74. doi: 10.1159/000493805

    [36]

    尹亮, 甘露, 史博群等. 长链非编码RNA在冠状动脉慢性完全闭塞病变的应用展望[J]. 临床心血管病杂志, 2021, 37(2): 172-127. doi: 10.13201/j.issn.1001-1439.2021.02.017

    [37]

    Josefs T, Boon RA. The Long Non-coding Road to Atherosclerosis[J]. Curr Atheroscler Rep, 2020, 22(10): 55. doi: 10.1007/s11883-020-00872-6

    [38]

    Khyzha N, Khor M, DiStefano PV, et al. Regulation of CCL2 expression in human vascular endothelial cells by a neighboring divergently transcribed long noncoding RNA[J]. Proc Natl Acad Sci U S A, 2019, 116(33): 16410-16419. doi: 10.1073/pnas.1904108116

    [39]

    Li W, Wang R, Ma JY, et al. A Human Long Non-Coding RNA ALT1 Controls the Cell Cycle of Vascular Endothelial Cells Via ACE2 and Cyclin D1 Pathway[J]. Cell Physiol Biochem, 2017, 43(3): 1152-1167. doi: 10.1159/000481756

    [40]

    Ferns G, Heikal L. Hypoxia in Atherogenesis[J]. Angiology, 2017, 68(6): 472-493. doi: 10.1177/0003319716662423

    [41]

    Yu Z, Huang Q, Zhang Q, et al. CircRNAs open a new era in the study of cardiovascular disease(Review)[J]. Int J Mol Med, 2021, 47(1): 49-64.

    [42]

    Si X, Zheng H, Wei G, et al. circRNA Hipk3 Induces Cardiac Regeneration after Myocardial Infarction in Mice by Binding to Notch1 and miR-133a[J]. Mol Ther Nucleic Acids, 2020, 21: 636-655. doi: 10.1016/j.omtn.2020.06.024

    [43]

    Bao MH, Zhang RQ, Huang XS, et al. Transcriptomic and Proteomic Profiling of Human Stable and Unstable Carotid Atherosclerotic Plaques[J]. Front Genet, 2021, 12: 755507. doi: 10.3389/fgene.2021.755507

    [44]

    Arora S, Singh P, Dohare R, et al. Unravelling host-pathogen interactions: ceRNA network in SARS-CoV-2 infection(COVID-19)[J]. Gene, 2020, 762: 145057. doi: 10.1016/j.gene.2020.145057

    [45]

    Ahmadi Badi S, Malek A, Paolini A, et al. Downregulation of ACE, AGTR1, and ACE2 genes mediating SARS-CoV-2 pathogenesis by gut microbiota members and their postbiotics on Caco-2 cells[J]. Microb Pathog, 2022, 173(Pt A): 105798.

    [46]

    Cretoiu D, Ionescu RF, Enache RM, et al. Gut Microbiome, Functional Food, Atherosclerosis, and Vascular Calcifications-Is There a Missing Link?[J]. Microorganisms, 2021, 9(9): 110.

    [47]

    高中山, 任明. 短链脂肪酸在冠心病防治中的研究进展[J]. 临床心血管病杂志, 2021, 37(11): 1062-1066. https://lcxxg.whuhzzs.com/article/doi/10.13201/j.issn.1001-1439.2021.11.019

    [48]

    Anselmi G, Gagliardi L, Egidi G, et al. Gut microbiota and cardiovascular diseases: a critical review[J]. Cardiol Rev, 2021, 29(4): 195-204. doi: 10.1097/CRD.0000000000000327

    [49]

    Witkowski M, Weeks TL, Hazen SL. Gut microbiota and cardiovascular disease[J]. Circ Res, 2020, 127(4): 553-570. doi: 10.1161/CIRCRESAHA.120.316242

    [50]

    Sudar-Milovanovic E, Gluvic Z, Obradovic M, et al. Tryptophan metabolism in atherosclerosis and diabetes[J]. Curr Med Chem, 2022, 29(1): 99-113. doi: 10.2174/0929867328666210714153649

    [51]

    Camargo SM, Singer D, Makrides V, et al. Tissue-specific amino acid transporter partners ACE2 and collectrin differentially interact with hartnup mutations[J]. Gastroenterology, 2009, 136(3): 872-82. doi: 10.1053/j.gastro.2008.10.055

  • 加载中

(1)

计量
  • 文章访问数:  605
  • PDF下载数:  141
  • 施引文献:  0
出版历程
收稿日期:  2022-12-15
刊出日期:  2023-12-13

目录