定量血流分数的相关研究及临床应用进展

李佳玮, 程兆云, 李正玉, 等. 定量血流分数的相关研究及临床应用进展[J]. 临床心血管病杂志, 2024, 40(4): 271-275. doi: 10.13201/j.issn.1001-1439.2024.04.004
引用本文: 李佳玮, 程兆云, 李正玉, 等. 定量血流分数的相关研究及临床应用进展[J]. 临床心血管病杂志, 2024, 40(4): 271-275. doi: 10.13201/j.issn.1001-1439.2024.04.004
LI Jiawei, CHENG Zhaoyun, LI Zhengyu, et al. Related research and clinical application progress of quantitative flow ratio[J]. J Clin Cardiol, 2024, 40(4): 271-275. doi: 10.13201/j.issn.1001-1439.2024.04.004
Citation: LI Jiawei, CHENG Zhaoyun, LI Zhengyu, et al. Related research and clinical application progress of quantitative flow ratio[J]. J Clin Cardiol, 2024, 40(4): 271-275. doi: 10.13201/j.issn.1001-1439.2024.04.004

定量血流分数的相关研究及临床应用进展

  • 基金项目:
    河南省科技攻关计划(No:SBGJ202101005)
详细信息

Related research and clinical application progress of quantitative flow ratio

More Information
  • 近年来针对冠状动脉狭窄的功能学评估已引起国内外的广泛重视,血流储备分数(FFR)是目前公认的评估病变血管狭窄生理学意义的“金标准”,但因其操作复杂且使用的压力导丝存在创伤风险,故而难以广泛应用于临床。定量血流分数(QFR)与FFR在诊断效能上具有较高的一致性,且在临床实践中更加便捷、安全,能够弥补FFR的不足之处。本文基于国内外现有研究进展,对QFR的原理、临床应用、优势和限制进行阐述。
  • 加载中
  • [1]

    《中国心血管健康与疾病报告2021》编写组. 《中国心血管健康与疾病报告2021》要点解读[J]. 中国心血管杂志, 2022, 27(4): 305-318. https://www.cnki.com.cn/Article/CJFDTOTAL-XIXG202304001.htm

    [2]

    Lawton JS, Tamis-Holland JE, Bangalore S, et al. 2021 ACC/AHA/SCAI Guideline for Coronary Artery Revascularization[J]. Circulation, 2022, 145(3): e18-e114.

    [3]

    Morris PD, van de Vosse FN, Lawford PV, et al. "Virtual"(Computed)fractional flow reserve: current challenges and limitations[J]. JACC Cardiovasc Interv, 2015, 8(8): 1009-1017. doi: 10.1016/j.jcin.2015.04.006

    [4]

    王莽原, 宋江平, 胡盛寿. 血流储备分数的临床作用和优缺点及近期进展[J]. 中国循环杂志, 2015, 30(6): 599-601. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGXH201506028.htm

    [5]

    袁兴东, 徐瑾, 钟长鸣, 等. 437例三磷酸腺苷不良反应的文献分析[J]. 中国药物警戒, 2016, 13(2): 94-97. https://www.cnki.com.cn/Article/CJFDTOTAL-YWJJ201602009.htm

    [6]

    Tu S, Echavarria-Pinto M, von Birgelen C, et al. Fractional flow reserve and coronary bifurcation anatomy: a novel quantitative model to assess and report the stenosis severity of bifurcation lesions[J]. JACC Cardiovasc Interv, 2015, 8(4): 564-574. doi: 10.1016/j.jcin.2014.12.232

    [7]

    Tu S, Westra J, Yang J, et al. Diagnostic accuracy of fast computational approaches to derive fractional flow reserve from diagnostic coronary angiography: The International Multicenter FAVOR Pilot Study[J]. JACC Cardiovasc Interv, 2016, 9(19): 2024-2035. doi: 10.1016/j.jcin.2016.07.013

    [8]

    Xu B, Tu S, Qiao S, et al. Diagnostic accuracy of angiography-based quantitative flow ratio measurements for online assessment of coronary stenosis[J]. J Am Coll Cardiol, 2017, 70(25): 3077-3087. doi: 10.1016/j.jacc.2017.10.035

    [9]

    Westra J, Andersen BK, Campo G, et al. Diagnostic performance of in-procedure angiography-derived quantitative flow reserve compared to pressure-derived fractional flow reserve: The FAVOR Ⅱ Europe-Japan Study[J]. J Am Heart Assoc, 2018, 7(14): 110.

    [10]

    Westra J, Tu S, Winther S, et al. Evaluation of Coronary Artery Stenosis by Quantitative Flow Ratio During Invasive Coronary Angiography: The WIFI Ⅱ Study(Wire-Free Functional Imaging Ⅱ)[J]. Circ Cardiovasc Imaging, 2018, 11(3): e7107.

    [11]

    Mejia-Renteria H, Lee JM, Lauri F, et al. Influence of microcirculatory dysfunction on angiography-based functional assessment of coronary stenoses[J]. JACC Cardiovasc Interv, 2018, 11(8): 741-753. doi: 10.1016/j.jcin.2018.02.014

    [12]

    Zaleska M, Koltowski L, Maksym J, et al. Quantitative flow ratio and fractional flow reserve mismatch-clinical and biochemical predictors of measurement discrepancy[J]. Postepy Kardiol Interwencyjnej, 2019, 15(3): 301-307. http://www.xueshufan.com/publication/2977707010

    [13]

    Emori H, Kubo T, Kameyama T, et al. Diagnostic accuracy of quantitative flow ratio for assessing myocardial ischemia in prior myocardial infarction[J]. Circ J, 2018, 82(3): 807-814. doi: 10.1253/circj.CJ-17-0949

    [14]

    Zhang R, Wang HY, Dou K, et al. Outcomes of functionally complete vs incomplete revascularization: insights from the FAVOR Ⅲ China Trial[J]. JACC Cardiovasc Interv, 2022, 15(24): 2490-2502. doi: 10.1016/j.jcin.2022.10.014

    [15]

    Saito Y, Cristea E, Bouras G, et al. Long-term serial functional evaluation after implantation of the Fantom sirolimus-eluting bioresorbable coronary scaffold[J]. Catheter Cardiovasc Interv, 2021, 97(3): 431-436. doi: 10.1002/ccd.28804

    [16]

    Lee HJ, Mejia-Renteria H, Escaned J, et al. Prediction of functional results of percutaneous coronary interventions with virtual stenting and quantitative flow ratio[J]. Catheter Cardiovasc Interv, 2022, 100(7): 1208-1217. doi: 10.1002/ccd.30451

    [17]

    Kirigaya H, Okada K, Hibi K, et al. Post-procedural quantitative flow ratio gradient and target lesion revascularization after drug-coated balloon or plain-old balloon angioplasty[J]. J Cardiol, 2022, 80(6): 511-517. doi: 10.1016/j.jjcc.2022.07.007

    [18]

    You W, Zhou Y, Wu Z, et al. Post-PCI quantitative flow ratio predicts 3-year outcome after rotational atherectomy in patients with heavily calcified lesions[J]. Clin Cardiol, 2022, 45(5): 558-566. doi: 10.1002/clc.23816

    [19]

    Lauri FM, Macaya F, Mejia-Renteria H, et al. Angiography-derived functional assessment of non-culprit coronary stenoses in primary percutaneous coronary intervention[J]. Euro Intervention, 2020, 15(18): e1594-e1601.

    [20]

    Spitaleri G, Tebaldi M, Biscaglia S, et al. Quantitative flow ratio identifies nonculprit coronary lesions requiring revascularization in patients with ST-segment-elevation myocardial infarction and multivessel disease[J]. Circ Cardiovasc Interv, 2018, 11(2): e6023.

    [21]

    De Maria GL, Scarsini R, Shanmuganathan M, et al. Angiography-derived index of microcirculatory resistance as a novel, pressure-wire-free tool to assess coronary microcirculation in ST elevation myocardial infarction[J]. Int J Cardiovasc Imaging, 2020, 36(8): 1395-1406.

    [22]

    Mejia-Renteria H, Lee JM, Choi KH, et al. Coronary microcirculation assessment using functional angiography: Development of a wire-free method applicable to conventional coronary angiograms[J]. Catheter Cardiovasc Interv, 2021, 98(6): 1027-1037.

    [23]

    Kang Y, Hong H, Sohn SH, et al. The impact of fractional flow reserve on clinical outcomes after coronary artery bypass grafting: a meta-analysis[J]. J Chest Surg, 2022, 55(6): 442-451.

    [24]

    Dowling C, Nelson AJ, Lim RY, et al. Quantitative flow ratio to predict long-term coronary artery bypass graft patency in patients with left main coronary artery disease[J]. Int J Cardiovasc Imaging, 2022, 38(12): 2811-2818.

    [25]

    Chen C, Zhao Y, Li W, et al. Relation of quantitative flow ratio with transit time coronary artery bypass graft flow measurement[J]. Front Cardiovasc Med, 2022, 9: 975759.

    [26]

    Spitaleri G, Brugaletta S, Potena L, et al. Role of quantitative flow ratio in predicting future cardiac allograft vasculopathy in heart transplant recipients[J]. Circ Cardiovasc Interv, 2022, 15(5): e11656.

    [27]

    Qi Q, Liu G, Yuan Z, et al. Quantitative flow ratio-guided surgical intervention in symptomatic myocardial bridging[J]. Cardiol J, 2020, 27(6): 685-692.

  • 加载中
计量
  • 文章访问数:  821
  • PDF下载数:  102
  • 施引文献:  0
出版历程
收稿日期:  2023-01-16
刊出日期:  2024-04-13

目录