miRNA在糖尿病心肌病中的靶向调控机制研究进展

张倩, 刘学霖, 张月梅, 等. miRNA在糖尿病心肌病中的靶向调控机制研究进展[J]. 临床心血管病杂志, 2025, 41(2): 150-155. doi: 10.13201/j.issn.1001-1439.2025.02.013
引用本文: 张倩, 刘学霖, 张月梅, 等. miRNA在糖尿病心肌病中的靶向调控机制研究进展[J]. 临床心血管病杂志, 2025, 41(2): 150-155. doi: 10.13201/j.issn.1001-1439.2025.02.013
ZHANG Qian, LIU Xuelin, ZHANG Yuemei, et al. Research progress on the targeted regulatory mechanism of miRNA in diabetic cardiomyopathy[J]. J Clin Cardiol, 2025, 41(2): 150-155. doi: 10.13201/j.issn.1001-1439.2025.02.013
Citation: ZHANG Qian, LIU Xuelin, ZHANG Yuemei, et al. Research progress on the targeted regulatory mechanism of miRNA in diabetic cardiomyopathy[J]. J Clin Cardiol, 2025, 41(2): 150-155. doi: 10.13201/j.issn.1001-1439.2025.02.013

miRNA在糖尿病心肌病中的靶向调控机制研究进展

  • 基金项目:
    甘肃省自然科学基金(No:23JRRA1377);兰州市科技计划项目(No:2022-5-84)
详细信息
    通讯作者: 陈永清,E-mail:chyqmd@163.com
  • 中图分类号: R542.2

Research progress on the targeted regulatory mechanism of miRNA in diabetic cardiomyopathy

More Information
  • 糖尿病心肌病是在糖尿病存在的情况下出现的心肌收缩和(或)舒张功能障碍,严重危害人类健康。虽然对糖尿病心肌病的发病机制进行了广泛的研究,但其调控机制尚不明确。近年来的研究发现,miRNA特异性结合miRNA分子的3’-非翻译区的碱基序列,参与靶标的调控,在糖尿病心肌病的发生发展中发挥重要作用。本文就miRNA在糖尿病心肌病发病中的重要作用进行综述,以期为今后的研究提供参考。
  • 加载中
  • 图 1  miRNA在糖尿病心肌病中的靶向调控作用

    Figure 1.  Targeted regulatory role of miRNA in DCM

  • [1]

    刘明波, 何新叶, 杨晓红, 等. 《中国心血管健康与疾病报告2023》要点解读[J]. 中国心血管杂志, 2024, 29(4): 305-324.

    [2]

    Dunlay SM, Givertz MM, Aguilar D, et al. Type 2 diabetes mellitus and heart failure: a scientific statement from the American heart association and the heart failure society of America: this statement does not represent an update of the 2017 ACC/AHA/HFSA heart failure guideline update[J]. Circulation, 2019, 140(7): e294-e324.

    [3]

    Seferović PM, Paulus WJ, Rosano G, et al. Diabetic myocardial disorder. A clinical consensus statement of the Heart Failure Association of the ESC and the ESC Working Group on Myocardial & Pericardial Diseases[J]. Eur J Heart Fail, 2024, 26(9): 1893-1903.

    [4]

    Tan Y, Zhang ZG, Zheng C, et al. Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: preclinical and clinical evidence[J]. Nat Rev Cardiol, 2020, 17: 585-607. doi: 10.1038/s41569-020-0339-2

    [5]

    Zhao X, Liu S, Wang X, et al. Diabetic cardiomyopathy: Clinical phenotype and practice[J]. Front Endocrinol(Lausanne), 2022, 13: 1032268. doi: 10.3389/fendo.2022.1032268

    [6]

    Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene Lin-4 encodes small RNAs with antisense complementarity to Lin-14[J]. Cell, 1993, 75(5): 843-854. doi: 10.1016/0092-8674(93)90529-Y

    [7]

    Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets[J]. Cell, 2005, 120(1): 15-20. doi: 10.1016/j.cell.2004.12.035

    [8]

    Shang RF, Lee S, Senavirathne G, et al. MicroRNAs in action: biogenesis, function and regulation[J]. Nat Rev Genet, 2023, 24: 816-833.

    [9]

    He XY, Kuang GY, Wu YR, et al. Emerging roles of exosomal miRNAs in diabetes mellitus[J]. Clin Transl Med, 2021, 11(6): e468. doi: 10.1002/ctm2.468

    [10]

    Ma XZ, Mei S, Wuyun Q, et al. Epigenetics in diabetic cardiomyopathy[J]. Clin Epigenetics, 2024, 16(1): 52. doi: 10.1186/s13148-024-01667-1

    [11]

    Hou J, Liang WY, Xiong SQ, et al. Identification of hub genes and potential CeRNA networks of diabetic cardiomyopathy[J]. Sci Rep, 2023, 13(1): 10258. doi: 10.1038/s41598-023-37378-5

    [12]

    Friedman RC, Farh KK, Burge CB, et al. Most mammalian mRNAs are conserved targets of microRNAs[J]. Genome Res, 2009, 19(1): 92-105. doi: 10.1101/gr.082701.108

    [13]

    Gebert LFR, MacRae IJ. Regulation of microRNA function inanimals[J]. Nat Rev Mol Cell Biol, 2019, 20: 21-37. doi: 10.1038/s41580-018-0045-7

    [14]

    Wang S, Talukder A, Cha M, et al. Computational annotation of miRNA transcription start sites[J]. Brief Bioinform, 2021, 22(1): 380-392. doi: 10.1093/bib/bbz178

    [15]

    Liu HY, Lei C, He Q, et al. Nuclear functions of mammalian microRNAs in gene regulation, immunity and cancer[J]. Mol Cancer, 2018, 17(1): 64. doi: 10.1186/s12943-018-0765-5

    [16]

    Hart M, Walch-Rückheim B, Krammes L, et al. MiR-34a as hub of T cell regulation networks[J]. J Immunother Cancer, 2019, 7(1): 187. doi: 10.1186/s40425-019-0670-5

    [17]

    Sun P, Liu DZ, Jickling GC, et al. MicroRNA-based therapeutics in central nervous system injuries[J]. J Cereb Blood Flow Metab, 2018, 38(7): 1125-1148. doi: 10.1177/0271678X18773871

    [18]

    Khan P, Siddiqui JA, Kshirsagar PG, et al. MicroRNA-1 attenuates the growth and metastasis of small cell lung cancer through CXCR4/FOXM1/RRM2 axis[J]. Mol Cancer, 2023, 22(1): 1. doi: 10.1186/s12943-022-01695-6

    [19]

    Yuan Y, Mei ZT, Qu ZZ, et al. Exosomes secreted from cardiomyocytes suppress the sensitivity of tumor ferroptosis in ischemic heart failure[J]. Signal Transduct Target Ther, 2023, 8(1): 121. doi: 10.1038/s41392-023-01336-4

    [20]

    Sun P, Zhang K, Hassan SH, et al. Endothelium-targeted deletion of microRNA-15a/16-1 promotes poststroke angiogenesis and improves long-term neurological recovery[J]. Circ Res, 2020, 126(8): 1040-1057. doi: 10.1161/CIRCRESAHA.119.315886

    [21]

    Zhang SZ, Tian WC, Duan XX, et al. Melatonin attenuates diabetic cardiomyopathy by increasing autophagy of cardiomyocytes via regulation of VEGF-B/GRP78/PERK signaling pathway[J]. Cardiovasc Diabetol, 2024, 23(1): 19. doi: 10.1186/s12933-023-02078-x

    [22]

    Gou L, Zou H, Li B. Long noncoding RNA MALAT1 knockdown inhibits progression of anaplastic thyroid carcinoma by regulating miR-200a-3p/FOXA1[J]. Cancer Biol Ther, 2019, 20(11): 1355-1365. doi: 10.1080/15384047.2019.1617567

    [23]

    You PH, Chen HC, Han WQ, et al. MiR-200a-3p overexpression alleviates diabetic cardiomyopathy injury in mice by regulating autophagy through the FOXO3/Mst1/Sirt3/AMPK axis[J]. Peer J, 2023, 11: e15840. doi: 10.7717/peerj.15840

    [24]

    Xiao C, Chen MY, Han YP, et al. The protection of luteolin against diabetic cardiomyopathy in rats is related to reversing JNK-suppressed autophagy[J]. Food Funct, 2023, 14(6): 2740-2749. doi: 10.1039/D2FO03871D

    [25]

    Denu RA, Hematti P. Effects of oxidative stress on mesenchymal stem cell biology[J]. Oxid Med Cell Longev, 2016, 2016: 2989076. doi: 10.1155/2016/2989076

    [26]

    Chen GH, Song CC, Pantopoulos K, et al. Mitochondrial oxidative stress mediated Fe-induced ferroptosis via the NRF2-ARE pathway[J]. Free Radic Biol Med, 2022, 180: 95-107. doi: 10.1016/j.freeradbiomed.2022.01.012

    [27]

    Yu ML, Sun YY, Shan XH, et al. Therapeutic overexpression of miR-92a-2-5p ameliorated cardiomyocyte oxidative stress injury in the development of diabetic cardiomyopathy[J]. Cell Mol Biol Lett, 2022, 27(1): 85. doi: 10.1186/s11658-022-00379-9

    [28]

    Zhang WQ, Lu JH, Wang YY, et al. Canagliflozin attenuates lipotoxicity in cardiomyocytes by inhibiting inflammation and ferroptosis through activating AMPK pathway[J]. Int J Mol Sci, 2023, 24(1): 858. doi: 10.3390/ijms24010858

    [29]

    Fang X, Wang H, Han D, et al. Ferroptosis as a target for protection against cardiomyopathy[J]. Proc Natl Acad Sci USA, 2019, 116(7): 2672-2680. doi: 10.1073/pnas.1821022116

    [30]

    Wu F, Shang CX, Jin T, et al. Hispidin inhibits ferroptosis induced by high glucose via the miR-15b-5p/GLS2 axis in pancreatic beta cells[J]. Evid Based Complement Alternat Med, 2023, 2023: 9428241. doi: 10.1155/2023/9428241

    [31]

    Das K, Rao LVM. The role of microRNAs in inflammation[J]. Int J Mol Sci, 2022, 23(24): 15479. doi: 10.3390/ijms232415479

    [32]

    Zhao SM, Tan Y, Qin JN, et al. MicroRNA-223-3p promotes pyroptosis of cardiomyocyte and release of inflammasome factors via downregulating the expression level of SPI1(PU. 1)[J]. Toxicology, 2022, 476: 153252. doi: 10.1016/j.tox.2022.153252

    [33]

    Phang RJ, Ritchie RH, Hausenloy DJ, et al. Cellular interplay between cardiomyocytes and non-myocytes in diabetic cardiomyopathy[J]. Cardiovasc Res, 2023, 119(3): 668-690. doi: 10.1093/cvr/cvac049

    [34]

    Liu GQ, Yan D, Yang L, et al. The effect of miR-471-3p on macrophage polarization in the development of diabetic cardiomyopathy[J]. Life Sci, 2021, 268: 118989. doi: 10.1016/j.lfs.2020.118989

    [35]

    Jia C, Chen H, Wei M, et al. Gold nanoparticle-based miR155 antagonist macrophage delivery restores the cardiac function in ovariectomized diabetic mouse model[J]. Int J Nanomedicine, 2017, 12: 4963-4979. doi: 10.2147/IJN.S138400

    [36]

    Suresh Babu S, Thandavarayan RA, Joladarashi D, et al. MicroRNA-126 overexpression rescues diabetes-induced impairment in efferocytosis of apoptotic cardiomyocytes[J]. Sci Rep, 2016, 6: 36207. doi: 10.1038/srep36207

    [37]

    Zeng C, Wang R, Tan H. Role of pyroptosis in cardiovascular diseases and its therapeutic implications[J]. Int J Biol Sci, 2019, 15(7): 1345-1357. doi: 10.7150/ijbs.33568

    [38]

    Yang L, Cheng CF, Li ZF, et al. Berberine blocks inflammasome activation and alleviates diabetic cardiomyopathy via the miR-18a-3p/Gsdmd pathway[J]. Int J Mol Med, 2023, 51(6): 49. doi: 10.3892/ijmm.2023.5252

    [39]

    Ren L, Chen X, Nie B, et al. Ranolazine inhibits pyroptosis via regulation of miR-135b in the treatment of diabetic cardiac fibrosis[J]. Front Mol Biosci, 2022, 9: 806966. doi: 10.3389/fmolb.2022.806966

    [40]

    Wei J, Zhao Y, Liang H, et al. Preliminary evidence for the presence of multiple forms of cell death in diabetes cardiomyopathy[J]. Acta Pharm Sin B, 2022, 12(1): 1-17. doi: 10.1016/j.apsb.2021.08.026

    [41]

    Cruz-Topete D, He B, Xu XJ, et al. Krüppel-like factor 13 is a major mediator of glucocorticoid receptor signaling in cardiomyocytes and protects these cells from DNA damage and death[J]. J Biol Chem, 2016, 291(37): 19374-19386. doi: 10.1074/jbc.M116.725903

    [42]

    Gu M, Wang J, Wang Y, et al. MiR-147b inhibits cell viability and promotes apoptosis of rat H9c2 cardiomyocytes via down-regulating KLF13 expression[J]. Acta Biochim Biophys Sin(Shanghai), 2018, 50(3): 288-297.

    [43]

    Xu CR, Fang QJ. Inhibiting glucose metabolism by miR-34a and miR-125b protects against Hyperglycemia-induced cardiomyocyte cell death[J]. Arq Bras Cardiol, 2021, 116(3): 415-422. doi: 10.36660/abc.20190529

    [44]

    王晓燕, 孟建辉, 刘志红, 等. MiR-29a-3p通过靶向Bak1参与高糖诱导的心肌细胞凋亡[J]. 山西医科大学学报, 2023, 54(6): 747-753.

    [45]

    Ma YL, Xu M, Cen XF, et al. Tectorigenin protects against cardiac fibrosis in diabetic mice heart via activating the adiponectin receptor 1-mediated AMPK pathway[J]. Biomedecine Pharmacother, 2024, 174: 116589. doi: 10.1016/j.biopha.2024.116589

    [46]

    Liu BX, Wei Y, He JJ, et al. Human umbilical cord-derived mesenchymal stromal cells improve myocardial fibrosis and restore miRNA-133a expression in diabetic cardiomyopathy[J]. Stem Cell Res Ther, 2024, 15(1): 120. doi: 10.1186/s13287-024-03715-2

  • 加载中
计量
  • 文章访问数:  636
  • 施引文献:  0
出版历程
收稿日期:  2024-09-02
刊出日期:  2025-02-13

返回顶部

目录