-
摘要: 大多数威胁生命的冠状动脉(冠脉)粥样硬化的不良后果是由冠脉斑块破裂和急性血栓形成引起的。随着影像学技术的进展,现在的成像方式能够提供高风险斑块的特征,预测不良心血管事件的发生,改善药物治疗策略和结果。本文主要讨论可识别高风险斑块的影像学技术,包括计算机断层扫描(CT)、磁共振成像(MRI)、虚拟组织学血管内超声(VH-IVUS)、近红外光谱学(NIRS)和冠脉血管镜,及其对未来不良心血管事件的预测作用,并总结这些成像技术的优势与局限性。Abstract: Most of ischemic and life-threatening coronary events result from coronary atherosclerotic plaque rupture and acute coronary thrombosis. Along with the developing of imaging technology, recent advances in imaging modalities have contributed to visualizing atherosclerotic plaques and defining lesion characteristics in vivo. This innovation has been applied to refining revascularization procedure, assessment of anti-atherosclerotic drug efficacy and the detection of high-risk plaques. As such, intravascular imaging plays an important role in further improvement of cardiovascular outcomes in patients with coronary artery disease. The current article reviews available intravascular imaging modalities with regard to its method, advantage and disadvantage, including multi-detector-row computed tomography (MDCT), magnetic resonance imaging(MRI), virtual histology intravascular ultrasound (VH-IVUS), Optical coherence tomography(OCT), near-infrared spectroscopy(NIRS) and intracoronary coronary angioscopy.
-
[1] SUH W M, SETO A H, MARGEY R J, et al. Intravascular detection of the vulnerable plaque[J]. Circ Cardiovasc Imaging,2011,4:169-178.
[2] VANCRAEYNEST D, PASQUET A, ROELANTS V, et al. Imaging the vulnerable plaque[J]. J Am Coll Cardiol,2011,57:1961-1979.
[3] O'ROURKE R A, BRUNDAGE B H, FROELICHER V F, et al. American College of Cardiology/American Heart Association Expert Consensus Document on electron-beam computed tomography for the diagnosis and prognosis of coronary artery disease[J]. J Am Coll Cardiol,2000,36:326-340.
[4] NISSEN S E, YOCK P. Intravascular ultrasound:novel pathophysiological insights and current clinical applications[J]. Circulation,2001,103:604-616.
[5] MOTOYAMA S, KONDO T, SARAI M, et al. Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes[J]. J Am Coll Cardiol,2007,50:319-326.
[6] MOTOYAMA S, SARAI M, HARIGAYA H, et al. Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome[J]. J Am Coll Cardiol,2009,54:49-57.
[7] SCHUETZ G M, ZACHAROPOULOU N M, SCHLATTMANN P, et al. Meta-analysis:noninvasive coronary angiography using computed tomography versus magnetic resonance imaging[J]. Ann Intern Med,2010,152:167-177.
[8] YEON S B, SABIR A, CLOUSE M, et al. Delayed-enhancement cardiovascular magnetic resonance coronary artery wall imaging:comparison with multislice computed tomography and quantitative coronary angiography[J].J Am Coll Cardiol,2007,50:441-447.
[9] KAWASAKI T, KOGA S, KOGA N, et al. Characterization of hyperintense plaque with noncontrast T(1)-weighted cardiac magnetic resonance coronary plaque imaging:comparison with multislice computed tomography and intravascular ultrasound[J]. JACC Cardiovasc Imaging,2009,2:720-728.
[10] NOGUCHI T, KAWASAKI T, TANAKA A, et al. High-intensity signals in coronary plaques on noncontrast T1-weighted magnetic resonance imaging as a novel determinant of coronary events[J]. J Am Coll Cardiol,2014,63:989-999.
[11] WITZENBICHLER B, MAEHARA A, WEISZ G, et al. Relationship between intravascular ultrasound guidance and clinical outcomes after drug-eluting stents:the assessment of dual antiplatelet therapy with drug-eluting stents (ADAPT-DES) study[J]. Circulation, 2014,129:463-470.
[12] PU J, MINTZ G S, BIRO S, et al. Insights into echo-attenuated plaques, echolucent plaques, and plaques with spotty calcification:novel findings from comparisons among intravascular ultrasound, near-infrared spectroscopy, and pathological histology in 2,294 human coronary artery segments[J]. J Am Coll Cardiol, 2014,63:2220-2233.
[13] GARCIA-GARCIA H M, COSTA M A, SERRUYS P W. Imaging of coronary atherosclerosis:intravascular ultrasound[J]. Eur Heart J,2010,31:2456-2469.
[14] KUME T, AKASAKA T, KAWAMOTO T, et al. Measurement of the thickness of the fibrous cap by optical coherence tomography[J]. Am Heart J,2006,152:755. e1-4.
[15] UEMURA S, ISHIGAMI K, SOEDA T, et al. Thin-cap fibroatheroma and microchannel findings in optical coherence tomography correlate with subsequent progression of coronary atheromatous plaques[J]. Eur Heart J,2012,33:78-85.
[16] KATAOKA Y, PURI R, HAMMADAH M, et al. Cholesterol crystals associate with coronary plaque vulnerability in vivo[J]. J Am Coll Cardiol, 2015,65:630-632.
[17] NAKAZAWA G, OTSUKA F, NAKANO M, et al. The pathology of neoatherosclerosis in human coronary implants bare-metal and drug-eluting stents[J]. J Am Coll Cardiol, 2011,57:1314-1322.
[18] OTSUKA F, BYRNE R A, YAHAGI K,et al. Neoatherosclerosis:overview of histopathologic findings and implications for intravascular imaging assessment[J]. Eur Heart J,2015,36:2147-2159.
[19] KANG S J, MINTZ G S, PU J, et al. Combined IVUS and NIRS detection of fibroatheromas:histopathological validation in human coronary arteries[J]. JACC Cardiovasc Imaging, 2015,8:184-194.
[20] HONDA S, KATAOKA Y, KANAYA T,et al. Characterization of coronary atherosclerosis by intravascular imaging modalities[J]. Cardiovasc Diagn Ther, 2016,6:368-381.
计量
- 文章访问数: 296
- PDF下载数: 93
- 施引文献: 0