Research progress of microRNAs in the regeneration and repair after myocardial infarction
-
摘要: 微小RNA(micro RNAs,miRs)是一类具有调控功能的内源性非编码RNA。心肌梗死是导致心脏重构和慢性心力衰竭的常见心血管事件,诸多miRs被发现在心肌梗死的病理生理机制中发挥重要作用,而心肌梗死后的心脏再生亦受到miRs调控。miRs参与调控心脏干、祖细胞对心肌的保护效应,并可诱导成纤维细胞向心肌细胞的重编程。此外,miRs可调节缺血后的血管生成,并参与不同细胞之间的细胞通讯。本文总结了miRs在上述研究中的最新进展,并讨论了miRs应用于心肌梗死再生修复中的前景和局限性。Abstract: MicroRNAs (miRs) are small noncoding RNAs that regulate gene expression. Myocardial infarction is a common cardiovascular event that results in cardiac remodeling and subsequent chronic heart failure. Several miRs have been reported to regulate important pathophysiological processes that lead to the consequences of myocardial infarction. Cardiac regeneration can also be regulated by miRs that interfere with cardioprotective effects mediated by stem or progenitor cells. miRs can also be used for direct reprogramming of cardiac fibroblasts into cardiomyocytes. Besides, miRs can regulate postischaemic angiogenesis and be transported via communication between cells of various types. In this review, we focus on the current understanding of the roles of miRs in these processes and particularly discuss the therapeutic potential and limitations of miRs in rendering cardiac regeneration and repair after myocardial infarction.
-
Key words:
- microRNA /
- myocardial infaction /
- regeneration /
- angiogenesis
-
-
[1] SANTANA E T, FELICIANO R D, SERRA A J, et al.Comparative mRNA and MircroRNA profiling during acute myocardial infarction induced by coronary occlusion and ablation radio-frequency currents[J].Front Physiol, 2016, 7:565-566.
[2] 刘肖肖, 杨承健, 韩志君.MiocroRNA与心肌梗死的心脏病理特征研究进展[J].临床心血管病杂志, 2015, 31 (9):928-931.
[3] UCHIDA S, DIMMELER S.Long noncoding RNAs in cardiovascular diseases[J].Circ Res, 2015, 116:737-750.
[4] THUM T, CONDORELLI G.Long Noncoding RNAs and MicroRNAs in cardiovascular pathophysiology[J].Circ Res, 2015, 116:751-762.
[5] TANG G, PENG L, QIAN G, et al.WITHDRAWN:Resveratrol increases microRNA-130aexpression to promote angiogenesis and improve heart functions in mice after myocardial infarction[J].Exp Mol Pathol, 2016, 32:333-335.
[6] 龙秀环, 徐新, 张社兵, 等.MicroRNA-432与TGF-β1在风湿性心脏病合并心房颤动患者中的表达[J].临床心血管病杂志, 2016, 32 (6):633-636.
[7] GAMA-CARVALHO M, ANDRADE J, BRAS-ROSARIO L.Regulation of cardiac cell fate by microRNAs:implications for heart regeneration[J].Cells, 2014, 3:996-1026.
[8] JANSEN F, YANG X, HOELSCHER M, et al.Endothelial microparticle-mediated transfer of MicroRNA-126promotes vascular endothelial cell repair via SPRED1and is abrogated in glucose-damaged endothelial microparticles[J].Circulation, 2013, 128:2026-2038.
[9] KLOOS W, VOGEL B, BLESSING E.MiRNAs in peripheral artery disease-something gripping this way comes[J].Vasa, 2014, 43:163-170.
[10] CHIARELLA-REDFERN H H, RAYNER K J, SUURONEN E J.Spatio-temporal expression patterns of microRNAs in remodelling and repair of the infarcted heart[J].Histol Histopathol, 2015, 30:141-149.
[11] 阮志敏, 武力勇, 朱国富, 等.microRNA-21与冠心病的相关性研究[J].临床心血管病杂志, 2015, 31 (1):50-53.
[12] XU Q, SEEGER F H, CASTILLO J, et al.MicroRNA-34acontributes to the impaired function of bone marrow-derived mononuclear cells from patients with cardiovascular disease[J].J Am Coll Cardiol, 2012, 59:2107-2117.
[13] SPINETTI G, FORTUNATO O, CAPORALI A, et al.MicroRNA-15aand microRNA-16impair human circulating proangiogenic cell functions and are increased in the proangiogenic cells and serum of patients with critical limb ischemia[J].Circ Res, 2013, 112:335-346.
[14] 王倩, 马俊芬, 蒋知云, 等.microRNA-499对急性心肌梗死诊断价值的Meta分析[J].临床心血管杂志, 2017, 33 (5):423-426.
[15] JAYAWARDENA T M, EGEMNAZAROV B, FINCH E A, et al.MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes[J].Circ Res, 2012, 110:1465-1473.
[16] NAM Y J, SONG K, LUO X, et al.Reprogramming of human fibroblasts toward a cardiac fate[J].Proc Natl Acad Sci U S America, 2013, 110:5588-5593.
[17] QIAN L, HUANG Y, SPENCER C I, et al.In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes[J].Nature, 2012, 485:593-598.
[18] 李韶南, 刘震, 陈平安, 等.循环microRNA-21及可溶性CD40L与不稳定斑块的关系[J].临床心血管病杂志, 2015, 31 (12):1283-1286.
[19] DANIEL J M, PENZKOFER D, TESKE R, et al.Inhibition of miR-92aimproves re-endothelialization and prevents neointima formation following vascular injury[J].Cardiovascular Research, 2014, 103:564-572.
[20] KANG H J, KANG W S, HONG M H, et al.Involvement of miR-34cin high glucose-insulted mesenchymal stem cells leads to inefficient therapeutic effect on myocardial infarction[J].Cell Signal, 2015, 27:2241-2251.
[21] HINKEL R, PENZKOFER D, ZUHLKE S, et al.Inhibition of microRNA-92aprotects against ischemia/reperfusion injury in a large-animal model[J].Circulation, 2013, 128:1066-1075.
[22] GUO Y, LUO F, LIU Q, et al.Regulatory non-coding RNAs in acute myocardial infarction[J].J Cell Mol Med, 2016, 35:360-372.
[23] YIN R, WANG R, GUO L, et al.MiR-17-3p inhibits angiogenesis by downregulating flk-1in the cellgrowth signal pathway[J].J Vasc Res, 2013, 50:157-166.
[24] YIN R, BAO W, XING Y, et al.MiR-19b-1inhibits angiogenesis by blocking cell cycle progression of endothelial cells[J].Biochem Biophys Res Commun, 2012, 417:771-776.
[25] SEMO J, SHARIR R, AFEK A, et al.The 106bapproximately 25microRNA cluster is essential for neovascularization after hindlimb ischaemia in mice[J].Eur Heart J, 2014, 35:3212-3223.
[26] ZHENG X, LI A, ZHAO L, et al.Key role of microRNA-15ain the KLF4suppressions of proliferation and angiogenesis in endothelial and vascular smooth muscle cells[J].Bioch Biophys Res Commun, 2013, 437:625-631.
[27] MELONI M, MARCHETTI M, GARNER K, et al.Local inhibition of microRNA-24improves reparative angiogenesis and left ventricle remodeling and function in mice with myocardial infarction[J].Mol Ther, 2013, 21:1390-1402.
[28] KASZA Z, FREDLUND FUCHS P, TAMM C, et al.MicroRNA-24 suppression of N-deacetylase/Nsulfotransferase-1 (NDST1) reduces endothelial cell responsiveness to vascular endothelial growth factor A (VEGFA)[J].J Biol Chem, 2013, 288:25956-25963.
[29] ICLI B, WARA A K, MOSLEHI J, et al.MicroRNA-26aregulates pathological and physiological angiogenesis by targeting BMP/SMAD1signaling[J].Circ Res, 2013, 113:1231-1241.
[30] QIAO A, KHECHADURI A, KANNAN MUTHARASAN R, et al.MicroRNA-210decreases heme levels by targeting ferrochelatase in cardiomyocytes[J].J Am Heart Assoc, 2013, 2:e000121.
[31] WEN Z, HUANG W, FENG Y, et al.MicroRNA-377regulates mesenchymal stem cell-induced angiogenesis in ischemic hearts by targeting VEGF[J].PLoS One, 2014, 9:e104666.
[32] VELICEASA D, BIYASHEV D, QIN G, et al.Therapeutic manipulation of angiogenesis with miR-27b[J].Vasc Cell, 2015, 7:6-7.
[33] LORENZEN J M, MARTINO F, THUM T.Detection and transport mechanisms of circulating microRNAs in neurological, cardiac and kidney diseases[J].Curr Med Chem, 2013, 20:3623-3628.
[34] NAZARI-JAHANTIGH M, EGEA V, SCHOBER A, et al.MicroRNA-specific regulatory mechanisms in atherosclerosis[J].J Mol Cell Cardiol, 2014, 36:360-370.
[35] MOCHARLA P, BRIAND S, GIANNOTTI G, et al.AngiomiR-126expression and secretion from circulating CD34 (+) and CD14 (+) PBMCs:role for proangiogenic effects and alterations in type 2diabetics[J].Blood, 2013, 121:226-236.
[36] BARILE L, LIONETTI V, CERVIO E, et al.Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction[J].Cardiovasc Res, 2014, 103:530-541.
[37] ONG S G, LEE W H, HUANG M, et al.Cross talk of combined gene and cell therapy in ischemic heart disease:role of exosomal microRNA transfer[J].Circulation, 2014, 130:S60-69.
[38] LIMA J JR, BATTY J A, SINCLAIR H, et al.MicroRNAs in ischemic heart disease:from pathophysiology to potential clinical applications[J].Cardiol Rev, 2016, 39:390-400.
[39] CHENG H S, SIVACHANDRAN N, LAU A, et al.MicroRNA-146represses endothelial activation by inhibiting pro-inflammatory pathways[J].EMBO MolMed, 2013, 5:949-966.
[40] CHEN L, WANG Y, PAN Y, et al.Cardiac progenitor-derived exosomes protect ischemic myocardium from acute ischemia/reperfusion injury[J].Bioch Biophys Res Commun, 2013, 431:566-571.
[41] YU B, GONG M, WANG Y, et al.Cardiomyocyte protection by GATA-4gene engineered mesenchymal stem cells is partially mediated by translocation of miR-221in microvesicles[J].PloS One, 2013, 8:e73304.
[42] BANG C, BATKAI S, DANGWAL S, et al.Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy[J].J Clin Invest, 2014, 124:2136-2146.
-
计量
- 文章访问数: 179
- PDF下载数: 112
- 施引文献: 0