微小RNA在心肌梗死再生修复中的研究进展

王宁, 文平, 刘辉. 微小RNA在心肌梗死再生修复中的研究进展[J]. 临床心血管病杂志, 2017, 33(8): 722-726. doi: 10.13201/j.issn.1001-1439.2017.08.002
引用本文: 王宁, 文平, 刘辉. 微小RNA在心肌梗死再生修复中的研究进展[J]. 临床心血管病杂志, 2017, 33(8): 722-726. doi: 10.13201/j.issn.1001-1439.2017.08.002
WANG Ning, WEN Ping, LIU Hui. Research progress of microRNAs in the regeneration and repair after myocardial infarction[J]. J Clin Cardiol, 2017, 33(8): 722-726. doi: 10.13201/j.issn.1001-1439.2017.08.002
Citation: WANG Ning, WEN Ping, LIU Hui. Research progress of microRNAs in the regeneration and repair after myocardial infarction[J]. J Clin Cardiol, 2017, 33(8): 722-726. doi: 10.13201/j.issn.1001-1439.2017.08.002

微小RNA在心肌梗死再生修复中的研究进展

详细信息
    通讯作者: 刘辉,E-mail:sdcocowangning@163.com
  • 中图分类号: R542.2

Research progress of microRNAs in the regeneration and repair after myocardial infarction

More Information
  • 微小RNA(micro RNAs,miRs)是一类具有调控功能的内源性非编码RNA。心肌梗死是导致心脏重构和慢性心力衰竭的常见心血管事件,诸多miRs被发现在心肌梗死的病理生理机制中发挥重要作用,而心肌梗死后的心脏再生亦受到miRs调控。miRs参与调控心脏干、祖细胞对心肌的保护效应,并可诱导成纤维细胞向心肌细胞的重编程。此外,miRs可调节缺血后的血管生成,并参与不同细胞之间的细胞通讯。本文总结了miRs在上述研究中的最新进展,并讨论了miRs应用于心肌梗死再生修复中的前景和局限性。
  • 加载中
  • [1]

    SANTANA E T, FELICIANO R D, SERRA A J, et al.Comparative mRNA and MircroRNA profiling during acute myocardial infarction induced by coronary occlusion and ablation radio-frequency currents[J].Front Physiol, 2016, 7:565-566.

    [2]

    刘肖肖, 杨承健, 韩志君.MiocroRNA与心肌梗死的心脏病理特征研究进展[J].临床心血管病杂志, 2015, 31 (9):928-931.

    [3]

    UCHIDA S, DIMMELER S.Long noncoding RNAs in cardiovascular diseases[J].Circ Res, 2015, 116:737-750.

    [4]

    THUM T, CONDORELLI G.Long Noncoding RNAs and MicroRNAs in cardiovascular pathophysiology[J].Circ Res, 2015, 116:751-762.

    [5]

    TANG G, PENG L, QIAN G, et al.WITHDRAWN:Resveratrol increases microRNA-130aexpression to promote angiogenesis and improve heart functions in mice after myocardial infarction[J].Exp Mol Pathol, 2016, 32:333-335.

    [6]

    龙秀环, 徐新, 张社兵, 等.MicroRNA-432与TGF-β1在风湿性心脏病合并心房颤动患者中的表达[J].临床心血管病杂志, 2016, 32 (6):633-636.

    [7]

    GAMA-CARVALHO M, ANDRADE J, BRAS-ROSARIO L.Regulation of cardiac cell fate by microRNAs:implications for heart regeneration[J].Cells, 2014, 3:996-1026.

    [8]

    JANSEN F, YANG X, HOELSCHER M, et al.Endothelial microparticle-mediated transfer of MicroRNA-126promotes vascular endothelial cell repair via SPRED1and is abrogated in glucose-damaged endothelial microparticles[J].Circulation, 2013, 128:2026-2038.

    [9]

    KLOOS W, VOGEL B, BLESSING E.MiRNAs in peripheral artery disease-something gripping this way comes[J].Vasa, 2014, 43:163-170.

    [10]

    CHIARELLA-REDFERN H H, RAYNER K J, SUURONEN E J.Spatio-temporal expression patterns of microRNAs in remodelling and repair of the infarcted heart[J].Histol Histopathol, 2015, 30:141-149.

    [11]

    阮志敏, 武力勇, 朱国富, 等.microRNA-21与冠心病的相关性研究[J].临床心血管病杂志, 2015, 31 (1):50-53.

    [12]

    XU Q, SEEGER F H, CASTILLO J, et al.MicroRNA-34acontributes to the impaired function of bone marrow-derived mononuclear cells from patients with cardiovascular disease[J].J Am Coll Cardiol, 2012, 59:2107-2117.

    [13]

    SPINETTI G, FORTUNATO O, CAPORALI A, et al.MicroRNA-15aand microRNA-16impair human circulating proangiogenic cell functions and are increased in the proangiogenic cells and serum of patients with critical limb ischemia[J].Circ Res, 2013, 112:335-346.

    [14]

    王倩, 马俊芬, 蒋知云, 等.microRNA-499对急性心肌梗死诊断价值的Meta分析[J].临床心血管杂志, 2017, 33 (5):423-426.

    [15]

    JAYAWARDENA T M, EGEMNAZAROV B, FINCH E A, et al.MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes[J].Circ Res, 2012, 110:1465-1473.

    [16]

    NAM Y J, SONG K, LUO X, et al.Reprogramming of human fibroblasts toward a cardiac fate[J].Proc Natl Acad Sci U S America, 2013, 110:5588-5593.

    [17]

    QIAN L, HUANG Y, SPENCER C I, et al.In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes[J].Nature, 2012, 485:593-598.

    [18]

    李韶南, 刘震, 陈平安, 等.循环microRNA-21及可溶性CD40L与不稳定斑块的关系[J].临床心血管病杂志, 2015, 31 (12):1283-1286.

    [19]

    DANIEL J M, PENZKOFER D, TESKE R, et al.Inhibition of miR-92aimproves re-endothelialization and prevents neointima formation following vascular injury[J].Cardiovascular Research, 2014, 103:564-572.

    [20]

    KANG H J, KANG W S, HONG M H, et al.Involvement of miR-34cin high glucose-insulted mesenchymal stem cells leads to inefficient therapeutic effect on myocardial infarction[J].Cell Signal, 2015, 27:2241-2251.

    [21]

    HINKEL R, PENZKOFER D, ZUHLKE S, et al.Inhibition of microRNA-92aprotects against ischemia/reperfusion injury in a large-animal model[J].Circulation, 2013, 128:1066-1075.

    [22]

    GUO Y, LUO F, LIU Q, et al.Regulatory non-coding RNAs in acute myocardial infarction[J].J Cell Mol Med, 2016, 35:360-372.

    [23]

    YIN R, WANG R, GUO L, et al.MiR-17-3p inhibits angiogenesis by downregulating flk-1in the cellgrowth signal pathway[J].J Vasc Res, 2013, 50:157-166.

    [24]

    YIN R, BAO W, XING Y, et al.MiR-19b-1inhibits angiogenesis by blocking cell cycle progression of endothelial cells[J].Biochem Biophys Res Commun, 2012, 417:771-776.

    [25]

    SEMO J, SHARIR R, AFEK A, et al.The 106bapproximately 25microRNA cluster is essential for neovascularization after hindlimb ischaemia in mice[J].Eur Heart J, 2014, 35:3212-3223.

    [26]

    ZHENG X, LI A, ZHAO L, et al.Key role of microRNA-15ain the KLF4suppressions of proliferation and angiogenesis in endothelial and vascular smooth muscle cells[J].Bioch Biophys Res Commun, 2013, 437:625-631.

    [27]

    MELONI M, MARCHETTI M, GARNER K, et al.Local inhibition of microRNA-24improves reparative angiogenesis and left ventricle remodeling and function in mice with myocardial infarction[J].Mol Ther, 2013, 21:1390-1402.

    [28]

    KASZA Z, FREDLUND FUCHS P, TAMM C, et al.MicroRNA-24 suppression of N-deacetylase/Nsulfotransferase-1 (NDST1) reduces endothelial cell responsiveness to vascular endothelial growth factor A (VEGFA)[J].J Biol Chem, 2013, 288:25956-25963.

    [29]

    ICLI B, WARA A K, MOSLEHI J, et al.MicroRNA-26aregulates pathological and physiological angiogenesis by targeting BMP/SMAD1signaling[J].Circ Res, 2013, 113:1231-1241.

    [30]

    QIAO A, KHECHADURI A, KANNAN MUTHARASAN R, et al.MicroRNA-210decreases heme levels by targeting ferrochelatase in cardiomyocytes[J].J Am Heart Assoc, 2013, 2:e000121.

    [31]

    WEN Z, HUANG W, FENG Y, et al.MicroRNA-377regulates mesenchymal stem cell-induced angiogenesis in ischemic hearts by targeting VEGF[J].PLoS One, 2014, 9:e104666.

    [32]

    VELICEASA D, BIYASHEV D, QIN G, et al.Therapeutic manipulation of angiogenesis with miR-27b[J].Vasc Cell, 2015, 7:6-7.

    [33]

    LORENZEN J M, MARTINO F, THUM T.Detection and transport mechanisms of circulating microRNAs in neurological, cardiac and kidney diseases[J].Curr Med Chem, 2013, 20:3623-3628.

    [34]

    NAZARI-JAHANTIGH M, EGEA V, SCHOBER A, et al.MicroRNA-specific regulatory mechanisms in atherosclerosis[J].J Mol Cell Cardiol, 2014, 36:360-370.

    [35]

    MOCHARLA P, BRIAND S, GIANNOTTI G, et al.AngiomiR-126expression and secretion from circulating CD34 (+) and CD14 (+) PBMCs:role for proangiogenic effects and alterations in type 2diabetics[J].Blood, 2013, 121:226-236.

    [36]

    BARILE L, LIONETTI V, CERVIO E, et al.Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction[J].Cardiovasc Res, 2014, 103:530-541.

    [37]

    ONG S G, LEE W H, HUANG M, et al.Cross talk of combined gene and cell therapy in ischemic heart disease:role of exosomal microRNA transfer[J].Circulation, 2014, 130:S60-69.

    [38]

    LIMA J JR, BATTY J A, SINCLAIR H, et al.MicroRNAs in ischemic heart disease:from pathophysiology to potential clinical applications[J].Cardiol Rev, 2016, 39:390-400.

    [39]

    CHENG H S, SIVACHANDRAN N, LAU A, et al.MicroRNA-146represses endothelial activation by inhibiting pro-inflammatory pathways[J].EMBO MolMed, 2013, 5:949-966.

    [40]

    CHEN L, WANG Y, PAN Y, et al.Cardiac progenitor-derived exosomes protect ischemic myocardium from acute ischemia/reperfusion injury[J].Bioch Biophys Res Commun, 2013, 431:566-571.

    [41]

    YU B, GONG M, WANG Y, et al.Cardiomyocyte protection by GATA-4gene engineered mesenchymal stem cells is partially mediated by translocation of miR-221in microvesicles[J].PloS One, 2013, 8:e73304.

    [42]

    BANG C, BATKAI S, DANGWAL S, et al.Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy[J].J Clin Invest, 2014, 124:2136-2146.

  • 加载中
计量
  • 文章访问数:  179
  • PDF下载数:  112
  • 施引文献:  0
出版历程
收稿日期:  2017-02-25

目录