2型糖尿病与血管衰老研究进展

马雅楠, 刘德敏, 谷国强. 2型糖尿病与血管衰老研究进展[J]. 临床心血管病杂志, 2021, 37(9): 791-795. doi: 10.13201/j.issn.1001-1439.2021.09.003
引用本文: 马雅楠, 刘德敏, 谷国强. 2型糖尿病与血管衰老研究进展[J]. 临床心血管病杂志, 2021, 37(9): 791-795. doi: 10.13201/j.issn.1001-1439.2021.09.003
MA Yanan, LIU Demin, GU Guoqiang. Progress of type 2 diabetes mellitus on vascular aging[J]. J Clin Cardiol, 2021, 37(9): 791-795. doi: 10.13201/j.issn.1001-1439.2021.09.003
Citation: MA Yanan, LIU Demin, GU Guoqiang. Progress of type 2 diabetes mellitus on vascular aging[J]. J Clin Cardiol, 2021, 37(9): 791-795. doi: 10.13201/j.issn.1001-1439.2021.09.003

2型糖尿病与血管衰老研究进展

  • 基金项目:

    河北省自然科学基金精准医学联合基金重点项目(No:H2020206409)

    心血管联盟默克基金(No:2017-CCA-xinxinmerckfund-011)

详细信息
    通讯作者: 谷国强,E-mail:guguoqiang72@163.com
  • 中图分类号: R587.1

Progress of type 2 diabetes mellitus on vascular aging

More Information
  • 衰老是人类疾病的主要危险因素,延缓衰老已成为提高生活质量的紧迫问题。其中血管衰老贯穿于年龄相关疾病(如2型糖尿病、神经退行性疾病、动脉粥样硬化、高血压)的整个发生、发展及演变过程。2型糖尿病作为血管病变的发病基础,在血管衰老过程中扮演何种角色,是目前学术界研究的热点。本文旨在对2型糖尿病在血管衰老相关疾病中的作用机制进行综述,以期深入认识2型糖尿病背景下血管衰老的特点,并为对其早期干预提供理论依据。
  • 加载中
  • [1]

    Ryder JR,Northrop E,Rudser KD,et al.Accelerated early vascular aging among adolescents with obesity and/or type 2 diabetes mellitus[J].J Am Heart Assoc,2020,9(10):e014891.

    [2]

    El-Seweidy MM,Sarhan Amin R,Husseini Atteia H,et al.Dyslipidemia induced inflammatory status,platelet activation and endothelial dysfunction in rabbits:Protective role of 10-Dehydrogingerdione[J].Biomed Pharmacother,2019,110:456-464.

    [3]

    Cunha PG,Boutouyrie P,Nilsson PM,et al.Early Vascular Ageing(EVA):definitions and clinical applicability[J].Curr Hypertens Rev,2017,13(1):8-15.

    [4]

    Lim K,Halim A,Lu TS,et al.Klotho:A major shareholder in vascular aging enterprises[J].Int J Mol Sci,2019,20(18):111.

    [5]

    Ni YQ,Lin X,Zhan JK,et al.Roles and functions of exosomal non-coding RNAs in vascular aging[J].Aging Dis,2020,11(1):164-178.

    [6]

    Pinti MV,Fink GK,Hathaway QA,et al.Mitochondrial dysfunction in type 2 diabetes mellitus:an organ-based analysis[J].Am J Physiol Endocrinol Metab,2019,316(2):E268-E285.

    [7]

    Jia G,Aroor AR,Jia C,et al.Endothelial cell senescence in aging-related vascular dysfunction[J].Biochim Biophys Acta Mol Basis Dis,2019,1865(7):1802-1809.

    [8]

    Hohensinner PJ,Kaun C,Buchberger E,et al.Age intrinsic loss of telomere protection via TRF1 reduction in endothelial cells[J].Biochim Biophys Acta,2016,1863(2):360-367.

    [9]

    Bubb KJ,Drummond GR,Figtree GA.New opportunities for targeting redox dysregulation in cardiovascular disease[J].Cardiovasc Res,2020,116(3):532-544.

    [10]

    Login CC,Baldea I,Tiperciuc B,et al.A novel thiazolyl schiff base:antibacterial and antifungal effects and in vitro oxidative stress modulation on human endothelial cells[J].Oxid Med Cell Longev,2019,2019:1607903.

    [11]

    Talepoor AG,Fouladseresht H,Khosropanah S,et al.Immune-inflammation in atherosclerosis:a new twist in an old tale[J].Endocr Metab Immune Disord Drug Targets,2020,20(4):525-545.

    [12]

    Ito F,Sono Y,Ito T.Measurement and clinical significance of lipid peroxidation as a biomarker of oxidative stress:oxidative stress in diabetes,atherosclerosis,and chronic inflammation[J].Antioxidants(Basel),2019,8(3):111.

    [13]

    Pandolfi A,De Filippis EA.Chronic hyperglicemia and nitric oxide bioavailability play a pivotal role in pro-atherogenic vascular modifications[J].Genes Nutr,2007,2(2):195-208.

    [14]

    Liu TS,Pei YH,Peng YP,et al.Oscillating high glucose enhances oxidative stress and apoptosis in human coronary artery endothelial cells[J].J Endocrinol Invest,2014,37(7):645-651.

    [15]

    Alizadeh S,Mirshafiey A,Djalali M,et al.Vitamin D3 induces gene expression of ox-LDL scavenger receptors in streptozotocin-induced diabetic rat aortas:new insight into the role of Vitamin D in diabetic atherosclerosis[J].Rep Biochem Mol Biol,2018,6(2):170-177.

    [16]

    Cai Y,Xu L,Xu C,et al.Hsa_circ_0001445 inhibits ox-LDL-induced HUVECs inflammation,oxidative stress and apoptosis by regulating miRNA-640[J].Perfusion,2020:267659120979472.

    [17]

    Luo Y,Lu S,Dong X,et al.Dihydromyricetin protects human umbilical vein endothelial cells from injury through ERK and Akt mediated Nrf2/HO-1 signaling pathway[J].Apoptosis,2017,22(8):1013-1024.

    [18]

    Ito F,Ito T,Suzuki C,et al.The application of a modified d-ROMs test for measurement of oxidative stress and oxidized high-density lipoprotein[J].Int J Mol Sci,2017,18(2):111.

    [19]

    Donato AJ,Walker AE,Magerko KA,et al.Life-long caloric restriction reduces oxidative stress and preserves nitric oxide bioavailability and function in arteries of old mice[J].Aging Cell,2013,12(5):772-783.

    [20]

    Poznyak A,Grechko AV,Poggio P,et al.The diabetes mellitus-atherosclerosis connection:the role of lipid and glucose metabolism and chronic inflammation[J].Int J Mol Sci,2020,21(5):111.

    [21]

    Hudson BI,Lippman ME.Targeting RAGE Signaling in Inflammatory Disease[J].Annu Rev Med,2018,69:349-364.

    [22]

    Bhardwaj R,Singh BP,Sandhu N,et al.Probiotic mediated NF-κB regulation for prospective management of type 2 diabetes[J].Mol Biol Rep,2020,47(3):2301-2313.

    [23]

    Enzerink A,Vaheri A.Fibroblast activation in vascular inflammation[J].J Thromb Haemost,2011,9(4):619-626.

    [24]

    Huang D,Gao W,Zhong X,et al.NLRP3 activation in endothelia promotes development of diabetes-associated atherosclerosis[J].Aging(Albany NY),2020,12(18):18181-18191.

    [25]

    Jin H,Zhu Y,Wang XD,et al.BDNF corrects NLRP3 inflammasome-induced pyroptosis and glucose metabolism reprogramming through KLF2/HK1 pathway in vascular endothelial cells[J].Cell Signal,2021,78:109843.

    [26]

    Yin Y,Zhou Z,Liu W,et al.Vascular endothelial cells senescence is associated with NOD-like receptor family pyrin domain-containing 3(NLRP3) inflammasome activation via reactive oxygen species(ROS)/thioredoxin-interacting protein(TXNIP)pathway[J].Int J Biochem Cell Biol,2017,84:22-34.

    [27]

    Hansen M,Rubinsztein DC,Walker DW.Publisher Correction:Autophagy as a promoter of longevity:insights from model organisms[J].Nat Rev Mol Cell Biol,2018,19(9):611.

    [28]

    Aragonès G,Dasuri K,Olukorede O,et al.Autophagic receptor p62 protects against glycation-derived toxicity and enhances viability[J].Aging Cell,2020,19(11):e13257.

    [29]

    Zhang H,Ge S,He K,et al.FoxO1 inhibits autophagosome-lysosome fusion leading to endothelial autophagic-apoptosis in diabetes[J].Cardiovasc Res,2019,115(14):2008-2020.

    [30]

    Aki T,Unuma K,Noritake K,et al.Formation of high molecular weight p62 by CORM-3[J].PLoS One,2019,14(1):e0210474.

    [31]

    Zhang Y,Cross SD,Stanton JB,et al.Early AMD-like defects in the RPE and retinal degeneration in aged mice with RPE-specific deletion of Atg5 or Atg7[J].Mol Vis,2017,23:228-241.

    [32]

    Phadwal K,Feng D,Zhu D,et al.Autophagy as a novel therapeutic target in vascular calcification[J].Pharmacol Ther,2020,206:107430.

    [33]

    Moldogazieva NT,Mokhosoev IM,Mel'nikova TI,et al.Oxidative Stress and Advanced Lipoxidation and Glycation End Products(ALEs and AGEs)in Aging and Age-Related Diseases[J].Oxid Med Cell Longev,2019,2019:3085756.

    [34]

    Chi C,Li DJ,Jiang YJ,et al.Vascular smooth muscle cell senescence and age-related diseases:State of the art[J].Biochim Biophys Acta Mol Basis Dis,2019,1865(7):1810-1821.

    [35]

    Lacolley P,Regnault V,Avolio AP.Smooth muscle cell and arterial aging:basic and clinical aspects[J].Cardiovasc Res,2018,114(4):513-528.

    [36]

    Durham AL,Speer MY,Scatena M,et al.Role of smooth muscle cells in vascular calcification:implications in atherosclerosis and arterial stiffness[J].Cardiovasc Res,2018,114(4):590-600.

    [37]

    李秀丹,石立力,姜晓艳.血管平滑肌细胞自噬与糖尿病动脉粥样硬化关系的研究进展[J].临床心血管病杂志,2019,35(1):92-95.

    [38]

    Poetsch F,Henze LA,Estepa M,et al.Role of SGK1 in the Osteogenic Transdifferentiation and Calcification of Vascular Smooth Muscle Cells Promoted by Hyperglycemic Conditions[J].Int J Mol Sci,2020,21(19):111.

    [39]

    Lin X,Zhan JK,Zhong JY,et al.lncRNA-ES3/miR-34c-5p/BMF axis is involved in regulating high-glucose-induced calcification/senescence of VSMCs[J].Aging(Albany NY),2019,11(2):523-535.

    [40]

    Lacolley P,Regnault V,Laurent S.Mechanisms of arterial stiffening:from mechanotransduction to epigenetics[J].Arterioscler Thromb Vasc Biol,2020,40(5):1055-1062.

    [41]

    Castro JP,Jung T,Grune T,et al.4-Hydroxynonenal(HNE)modified proteins in metabolic diseases[J].Free Radic Biol Med,2017,111:309-315.

    [42]

    Reddy MA,Das S,Zhuo C,et al.Regulation of vascular smooth muscle cell dysfunction under diabetic conditions by miR-504[J].Arterioscler Thromb Vasc Biol,2016,36(5):864-873.

    [43]

    Park HS,Han JH,Jung SH,et al.Anti-apoptotic effects of autophagy via ROS regulation in microtubule-targeted and PDGF-stimulated vascular smooth muscle cells[J].Korean J Physiol Pharmacol,2018,22(3):349-360.

    [44]

    薛新月,畅智慧,刘兆玉.血管平滑肌细胞在血管钙化中的调控机制研究进展[J].临床心血管病杂志,2020,36(9):870-873.

    [45]

    Shyu KG,Cheng WP,Wang BW.Angiotensin II Downregulates MicroRNA-145 to Regulate Kruppel-like Factor 4 and Myocardin Expression in Human Coronary Arterial Smooth Muscle Cells under High Glucose Conditions.Mol Med.2015.21(1):616-625.

    [46]

    Nanayakkara G,Viswaprakash N,Zhong J,et al.PPARγ activation improves the molecular and functional components of I(to)remodeling by angiotensin II[J].Curr Pharm Des,2013,19(27):4839-4847.

    [47]

    Wang X,Khalil RA.Matrix Metalloproteinases,Vascular Remodeling,and Vascular Disease[J].Adv Pharmacol,2018,81:241-330.

    [48]

    Harvey A,Montezano AC,Lopes RA,et al.Vascular Fibrosis in Aging and Hypertension:Molecular Mechanisms and Clinical Implications[J].Can J Cardiol,2016,32(5):659-668.

    [49]

    Du Y,Han J,Zhang H,et al.Kaempferol Prevents Against Ang II-induced Cardiac Remodeling Through Attenuating Ang II-induced Inflammation and Oxidative Stress[J].J Cardiovasc Pharmacol,2019,74(4):326-335.

    [50]

    Altenhöfer S,Kleikers PW,Radermacher KA,et al.The NOX toolbox:validating the role of NADPH oxidases in physiology and disease[J].Cell Mol Life Sci,2012,69(14):2327-2343.

    [51]

    Liu Y,Liang C,Liu X,et al.AGEs increased migration and inflammatory responses of adventitial fibroblasts via RAGE,MAPK and NF-kappaB pathways[J].Atherosclerosis,2010,208(1):34-42.

    [52]

    Burr SD,Stewart JA Jr.Extracellular matrix components isolated from diabetic mice alter cardiac fibroblast function through the AGE/RAGE signaling cascade[J].Life Sci,2020,250:117569.

    [53]

    Wang HF,Yu QQ,Zheng RF,et al.Inhibition of vascular adventitial remodeling by netrin-1 in diabetic rats[J].J Endocrinol,2020,244(3):445-458.

  • 加载中
计量
  • 文章访问数:  569
  • PDF下载数:  470
  • 施引文献:  0
出版历程
收稿日期:  2021-01-27

目录