磁性氧化铁纳米颗粒的心血管安全性研究进展

卢启正, 郑浩, 沈运丽. 磁性氧化铁纳米颗粒的心血管安全性研究进展[J]. 临床心血管病杂志, 2022, 38(3): 176-180. doi: 10.13201/j.issn.1001-1439.2022.03.003
引用本文: 卢启正, 郑浩, 沈运丽. 磁性氧化铁纳米颗粒的心血管安全性研究进展[J]. 临床心血管病杂志, 2022, 38(3): 176-180. doi: 10.13201/j.issn.1001-1439.2022.03.003
LU Qizheng, ZHENG Hao, SHEN Yunli. Research progress of iron oxide magnetic nanoparticles in cardiovascular biocompatibility[J]. J Clin Cardiol, 2022, 38(3): 176-180. doi: 10.13201/j.issn.1001-1439.2022.03.003
Citation: LU Qizheng, ZHENG Hao, SHEN Yunli. Research progress of iron oxide magnetic nanoparticles in cardiovascular biocompatibility[J]. J Clin Cardiol, 2022, 38(3): 176-180. doi: 10.13201/j.issn.1001-1439.2022.03.003

磁性氧化铁纳米颗粒的心血管安全性研究进展

  • 基金项目:
    江西省自然科学基金(No:20192BAB205006);上海市浦东新区学科带头人培养计划(No:PWRd2020-09);上海市浦东新区临床高峰学科项目(No:PWYgf2021-01)
详细信息

Research progress of iron oxide magnetic nanoparticles in cardiovascular biocompatibility

More Information
  • 近20余年来,磁性氧化铁纳米颗粒(IONPs)广泛应用于心血管领域,如磁靶向药物递送、细胞高效磁转染、药物捕获、干细胞移植示踪、心脏磁共振对比剂等,展示了广阔的应用前景和潜在的临床应用价值。然而,IONPs的毒性正日益引起关注,严重阻碍了其在心血管领域的临床转化。本综述总结了IONPs的心血管毒性作用和可能机制,并初步探讨如何改善IONPs的安全性。
  • 加载中
  • [1]

    Zhao X, Wang X, Wang J, et al. A Peptide-functionalized magnetic nanoplatform-loaded melatonin for targeted amelioration of fibrosis in pressure overload-induced cardiac hypertrophy[J]. Int J Nanomedicine, 2020, 15: 1321-1333. doi: 10.2147/IJN.S235518

    [2]

    Yamoah MA, Moshref M, Sharma J, et al. Highly efficient transfection of human induced pluripotent stem cells using magnetic nanoparticles[J]. Int J Nanomedicine, 2018, 13: 6073-6078. doi: 10.2147/IJN.S172254

    [3]

    Stirrat CG, Alam SR, MacGillivray TJ, et al. Ferumoxytol-enhanced magnetic resonance imaging in acute myocarditis[J]. Heart, 2018, 104(4): 300-305. doi: 10.1136/heartjnl-2017-311688

    [4]

    Ottersbach A, Mykhaylyk O, Heidsieck A, et al. Improved heart repair upon myocardial infarction: Combination of magnetic nanoparticles and tailored magnets strongly increases engraftment of myocytes[J]. Biomaterials, 2018, 155: 176-190. doi: 10.1016/j.biomaterials.2017.11.012

    [5]

    Harrison R, Lugo Leija HA, Strohbuecker S, et al. Development and validation of broad-spectrum magnetic particle labelling processes for cell therapy manufacturing[J]. Stem Cell Res Ther, 2018, 9(1): 248. doi: 10.1186/s13287-018-0968-0

    [6]

    Blumenfeld CM, Schulz MD, Aboian MS, et al. Drug capture materials based on genomic DNA-functionalized magnetic nanoparticles[J]. Nat Commun, 2018, 9(1): 2870. doi: 10.1038/s41467-018-05305-2

    [7]

    Shevtsov MA, Nikolaev BP, Ryzhov VA, et al. Detection of experimental myocardium infarction in rats by MRI using heat shock protein 70 conjugated superparamagnetic iron oxide nanoparticle[J]. Nanomedicine, 2016, 12(3): 611-621. doi: 10.1016/j.nano.2015.10.017

    [8]

    Anselmo AC, Mitragotri S. Nanoparticles in the clinic: an update[J]. Bioeng Transl Med, 2019, 4(3): e10143. doi: 10.1002/btm2.10143

    [9]

    Stirrat CG, Alam S, MacGillivray TJ, et al. Ferumoxytol-enhanced MRI in patients with prior cardiac transplantation[J]. Open Heart, 2019, 6(2): e001115. doi: 10.1136/openhrt-2019-001115

    [10]

    Mathiasen AB, Qayyum AA, Jørgensen E, et al. In vivo MRI tracking of mesenchymal stromal cells labeled with ultrasmall paramagnetic iron oxide particles after intramyocardial transplantation in patients with chronic ischemic heart disease[J]. Stem Cells Int, 2019, 2019: 2754927. doi: 10.1155/2019/2754927

    [11]

    Scally C, Abbas H, Ahearn T, et al. Myocardial and systemic inflammation in acute stress-induced(takotsubo)cardiomyopathy[J]. Circulation, 2019, 139(13): 1581-1592. doi: 10.1161/CIRCULATIONAHA.118.037975

    [12]

    Yarjanli Z, Ghaedi K, Esmaeili A, et al. Iron oxide nanoparticles may damage to the neural tissue through iron accumulation, oxidative stress, and protein aggregation[J]. BMC Neurosci, 2017, 18(1): 51. doi: 10.1186/s12868-017-0369-9

    [13]

    Malhotra N, Lee JS, Liman R, et al. Potential toxicity of iron oxide magnetic nanoparticles: a review[J]. Molecules, 2020, 25(14): 111. doi: 10.3390/molecules25143159

    [14]

    Volkovova K, Handy RD, Staruchova M, et al. Health effects of selected nanoparticles in vivo: liver function and hepatotoxicity following intravenous injection of titanium dioxide and Na-oleate-coated iron oxide nanoparticles in rodents[J]. Nanotoxicology, 2015, 9 Suppl 1: 95-105. doi: 10.3109/17435390.2013.815285

    [15]

    Gokduman K, Bestepe F, Li L, et al. Dose-, treatment-and time-dependent toxicity of superparamagnetic iron oxide nanoparticles on primary rat hepatocytes[J]. Nanomedicine(Lond), 2018, 13(11): 1267-1284.

    [16]

    Schlachter EK, Widmer HR, Bregy A, et al. Metabolic pathway and distribution of superparamagnetic iron oxide nanoparticles: in vivo study[J]. Int J Nanomedicine, 2011, 6: 1793-1800. doi: 10.2147/IJN.S23638

    [17]

    Gaharwar US, Meena R, Rajamani P. Biodistribution, clearance and morphological alterations of intravenously administered iron oxide nanoparticles in male wistar rats[J]. Int J Nanomedicine, 2019, 14: 9677-9692. doi: 10.2147/IJN.S223142

    [18]

    Yang L, Kuang H, Zhang W, et al. Size dependent biodistribution and toxicokinetics of iron oxide magnetic nanoparticles in mice[J]. Nanoscale, 2015, 7(2): 625-636. doi: 10.1039/C4NR05061D

    [19]

    Tsoi KM, MacParland SA, Ma XZ, et al. Mechanism of hard-nanomaterial clearance by the liver[J]. Nat Mater, 2016, 15(11): 1212-1221. doi: 10.1038/nmat4718

    [20]

    Jiráková K, Moskvin M, Machová Urdzíková L, et al. The negative effect of magnetic nanoparticles with ascorbic acid on peritoneal macrophages[J]. Neurochem Res, 2020, 45(1): 159-170. doi: 10.1007/s11064-019-02790-9

    [21]

    Rojas JM, Sanz-Ortega L, Mulens-Arias V, et al. Superparamagnetic iron oxide nanoparticle uptake alters M2 macrophage phenotype, iron metabolism, migration and invasion[J]. Nanomedicine, 2016, 12(4): 1127-1138. doi: 10.1016/j.nano.2015.11.020

    [22]

    Teeguarden JG, Mikheev VB, Minard KR, et al. Comparative iron oxide nanoparticle cellular dosimetry and response in mice by the inhalation and liquid cell culture exposure routes[J]. Part Fibre Toxicol, 2014, 11: 46. doi: 10.1186/s12989-014-0046-4

    [23]

    Ma P, Luo Q, Chen J, et al. Intraperitoneal injection of magnetic Fe3O4-nanoparticle induces hepatic and renal tissue injury via oxidative stress in mice[J]. Int J Nanomedicine, 2012, 7: 4809-4818.

    [24]

    Daniłowicz-Szymanowicz L, Świątczak M, Sikorska K, et al. Pathogenesis, diagnosis, and clinical implications of hereditary hemochromatosis-the cardiological point of view[J]. Diagnostics(Basel), 2021, 11(7): 111.

    [25]

    邓英建, 郑小燕, 秦奋, 等. 铁超负荷性心肌病的认识与进展[J]. 临床心血管病杂志, 2019, 35(5): 394-396. https://www.cnki.com.cn/Article/CJFDTOTAL-LCXB201905002.htm

    [26]

    Nemmar A, Beegam S, Yuvaraju P, et al. Ultrasmall superparamagnetic iron oxide nanoparticles acutely promote thrombosis and cardiac oxidative stress and DNA damage in mice[J]. Part Fibre Toxicol, 2016, 13(1): 22. doi: 10.1186/s12989-016-0132-x

    [27]

    Manickam V, Periyasamy M, Dhakshinamoorthy V, et al. Recurrent exposure to ferric oxide nanoparticles alters myocardial oxidative stress, apoptosis and necrotic markers in male mice[J]. Chem Biol Interact, 2017, 278: 54-64. doi: 10.1016/j.cbi.2017.10.003

    [28]

    Moon BF, Iyer SK, Hwuang E, et al. Iron imaging in myocardial infarction reperfusion injury[J]. Nat Commun, 2020, 11(1): 3273. doi: 10.1038/s41467-020-16923-0

    [29]

    Lakhal-Littleton S, Wolna M, Carr CA, et al. Cardiac ferroportin regulates cellular iron homeostasis and is important for cardiac function[J]. Proc Natl Acad Sci USA, 2015, 112(10): 3164-3169. doi: 10.1073/pnas.1422373112

    [30]

    Huang Z, Li C, Yang S, et al. Magnetic resonance hypointensive signal primarily originates from extracellular iron particles in the long-term tracking of mesenchymal stem cells transplanted in the infarcted myocardium[J]. Int J Nanomedicine, 2015, 10: 1679-1690.

    [31]

    Alam SR, Shah AS, Richards J, et al. Ultrasmall superparamagnetic particles of iron oxide in patients with acute myocardial infarction: early clinical experience[J]. Circ Cardiovasc Imaging, 2012, 5(5): 559-565. doi: 10.1161/CIRCIMAGING.112.974907

    [32]

    Shen Y, Gong S, Li J, et al. Co-loading antioxidant N-acetylcysteine attenuates cytotoxicity of iron oxide nanoparticles in hypoxia/reoxygenation cardiomyocytes[J]. Int J Nanomedicine, 2019, 14: 6103-6115. doi: 10.2147/IJN.S209820

    [33]

    Nunes AD, Ramalho LS, Souza AP, et al. Manganese ferrite-based nanoparticles induce ex vivo, but not in vivo, cardiovascular effects[J]. Int J Nanomedicine, 2014, 9: 3299-3312.

    [34]

    Iversen NK, Frische S, Thomsen K, et al. Superparamagnetic iron oxide polyacrylic acid coated γ-Fe2O3nanoparticles do not affect kidney function but cause acute effect on the cardiovascular function in healthy mice[J]. Toxicol Appl Pharmacol, 2013, 266(2): 276-288. doi: 10.1016/j.taap.2012.10.014

    [35]

    Zheng KH, Schoormans J, Stiekema L, et al. Plaque permeability assessed with DCE-MRI associates with USPIO uptake in patients with peripheral artery disease[J]. JACC Cardiovasc Imaging, 2019, 12(10): 2081-2083. doi: 10.1016/j.jcmg.2019.04.014

    [36]

    Su L, Han L, Ge F, et al. The effect of novel magnetic nanoparticles on vascular endothelial cell function in vitro and in vivo[J]. J Hazard Mater, 2012, 235-236: 316-325. doi: 10.1016/j.jhazmat.2012.08.003

    [37]

    Zhang L, Wang X, Miao Y, et al. Magnetic ferroferric oxide nanoparticles induce vascular endothelial cell dysfunction and inflammation by disturbing autophagy[J]. J Hazard Mater, 2016, 304: 186-195. doi: 10.1016/j.jhazmat.2015.10.041

    [38]

    Duan J, Du J, Jin R, et al. Iron oxide nanoparticles promote vascular endothelial cells survival from oxidative stress by enhancement of autophagy[J]. Regen Biomater, 2019, 6(4): 221-229. doi: 10.1093/rb/rbz024

    [39]

    Udani K, Chris-Olaiya A, Ohadugha C, et al. Cardiovascular manifestations in hospitalized patients with hemochromatosis in the United States[J]. Int J Cardiol, 2021, 342: 117-124. doi: 10.1016/j.ijcard.2021.07.060

    [40]

    van den Boomen M, Slart R, Hulleman EV, et al. Native T1 reference values for nonischemic cardiomyopathies and populations with increased cardiovascular risk: A systematic review and meta-analysis[J]. J Magn Reson Imaging, 2018, 47(4): 891-912. doi: 10.1002/jmri.25885

    [41]

    Koohi F, Kazemi T, Miri-Moghaddam E. Cardiac complications and iron overload in beta thalassemia major patients-a systematic review and meta-analysis[J]. Ann Hematol, 2019, 98(6): 1323-1331. doi: 10.1007/s00277-019-03618-w

    [42]

    Ghanavat M, Haybar H, Pezeshki S, et al. Cardiomyopathy in thalassemia: quick review from cellular aspects to diagnosis and current treatments[J]. Lab Med, 2020, 51(2): 143-150.

    [43]

    Sumneang N, Siri-Angkul N, Kumfu S, et al. The effects of iron overload on mitochondrial function, mitochondrial dynamics, and ferroptosis in cardiomyocytes[J]. Arch Biochem Biophys, 2020, 680: 108241. doi: 10.1016/j.abb.2019.108241

    [44]

    Grady RW, Galanello R, Randolph RE, et al. Toward optimizing the use of deferasirox: potential benefits of combined use with deferoxamine[J]. Haematologica, 2013, 98(1): 129-135. doi: 10.3324/haematol.2012.070607

    [45]

    Cokic I, Kali A, Wang X, et al. Iron deposition following chronic myocardial infarction as a substrate for cardiac electrical anomalies: initial findings in a canine model[J]. PLoS One, 2013, 8(9): e73193. doi: 10.1371/journal.pone.0073193

    [46]

    Kali A, Kumar A, Cokic I, et al. Chronic manifestation of postreperfusion intramyocardial hemorrhage as regional iron deposition: a cardiovascular magnetic resonance study with ex vivo validation[J]. Circ Cardiovasc Imaging, 2013, 6(2): 218-228. doi: 10.1161/CIRCIMAGING.112.000133

    [47]

    Behrouzi B, Weyers JJ, Qi X, et al. Action of iron chelator on intramyocardial hemorrhage and cardiac remodeling following acute myocardial infarction[J]. Basic Res Cardiol, 2020, 115(3): 24. doi: 10.1007/s00395-020-0782-6

    [48]

    Takahashi J, Suda A, Yasuda S, et al. Measurement of myocardial lactate production for diagnosis of coronary microvascular spasm[J]. J Vis Exp, 2021, (175): 111.

    [49]

    Nunes A, Gomes-Silva LA, Zufelato N, et al. Albumin coating prevents cardiac effect of the magnetic nanoparticles[J]. IEEE Trans Nanobioscience, 2019, 18(4): 640-650. doi: 10.1109/TNB.2019.2931962

    [50]

    Marrella A, Iafisco M, Adamiano A, et al. A combined low-frequency electromagnetic and fluidic stimulation for a controlled drug release from superparamagnetic calcium phosphate nanoparticles: potential application for cardiovascular diseases[J]. J R Soc Interface, 2018, 15(144): 110.

    [51]

    Cochran DB, Wattamwar PP, Wydra R, et al. Suppressing iron oxide nanoparticle toxicity by vascular targeted antioxidant polymer nanoparticles[J]. Biomaterials, 2013, 34(37): 9615-9622. doi: 10.1016/j.biomaterials.2013.08.025

  • 加载中
计量
  • 文章访问数:  1547
  • PDF下载数:  588
  • 施引文献:  0
出版历程
收稿日期:  2021-09-12
刊出日期:  2022-03-13

目录