钙化性主动脉瓣疾病生物信息学分析和关键基因筛选

宣诗怡, 周雨婷, 陈亮, 等. 钙化性主动脉瓣疾病生物信息学分析和关键基因筛选[J]. 临床心血管病杂志, 2022, 38(3): 222-227. doi: 10.13201/j.issn.1001-1439.2022.03.012
引用本文: 宣诗怡, 周雨婷, 陈亮, 等. 钙化性主动脉瓣疾病生物信息学分析和关键基因筛选[J]. 临床心血管病杂志, 2022, 38(3): 222-227. doi: 10.13201/j.issn.1001-1439.2022.03.012
XUAN Shiyi, ZHOU Yuting, CHEN Liang, et al. Bioinformatics analysis and key gene screening of calcified aortic valve disease[J]. J Clin Cardiol, 2022, 38(3): 222-227. doi: 10.13201/j.issn.1001-1439.2022.03.012
Citation: XUAN Shiyi, ZHOU Yuting, CHEN Liang, et al. Bioinformatics analysis and key gene screening of calcified aortic valve disease[J]. J Clin Cardiol, 2022, 38(3): 222-227. doi: 10.13201/j.issn.1001-1439.2022.03.012

钙化性主动脉瓣疾病生物信息学分析和关键基因筛选

  • 基金项目:
    江苏省自然科学基金面上项目(No:BK20201139)
详细信息
    通讯作者: 宗刚军,E-mail:zonggj@163.com
  • 中图分类号: R542.5

Bioinformatics analysis and key gene screening of calcified aortic valve disease

More Information
  • 目的 探索可能引起钙化性主动脉瓣疾病(CAVD)的关键基因和信号转导通路,寻找CAVD患者瓣膜组织中浸润的关键细胞,为CAVD诊疗提供新的思路。方法 从GEO数据库中获取人类CAVD现有信息芯片,筛选出正常主动脉瓣与CAVD瓣膜之间的差异表达基因(DEGs)。对DEGs的功能和通路基于基因本体论(GO)、京都基因和基因组百科全书(KEGG)进行富集分析。应用String数据库和Cytoscape软件构建蛋白质-蛋白质相互作用(PPI)网络,并筛选出关键基因。运用CIBERSORT数据包计算CAVD中22种免疫细胞浸润比例。结果 通过文本挖掘和数据分析,CAVD患者瓣膜组织有95个DEGs,其中64个基因上调,31个基因下调。这些DEGs通过GO分析富集到细胞外基质组织、细胞外结构组织、外部封装结构组织等117个生物学过程,含胶原蛋白的细胞外基质、内质网腔、胶原蛋白三聚体等13个细胞组分和细胞外基质结构成分、整合素结合、具有拉伸强度的细胞外基质结构成分等33个分子功能。KEGG分析显示主要在蛋白质消化与吸收、细胞外基质-受体相互作用、局灶性黏附等10个方面富集。通过PPI分析筛选出10个关键基因(COL4A2COL4A1COL3A1THBS2COL5A1COL5A2COL4A4COL11A1FN1COL4A3)和两个基因模块,这些关键基因主要在细胞外基质-受体相互作用、黏着斑和蛋白质消化与吸收等方面富集。经过CIBERSORT分析表明CAVD患者M0型巨噬细胞和M1型巨噬细胞细胞水平较高(P < 0.05)。结论 本研究发现FN1MMP9COL3A1SPP1COL4A2THBS2COL5A2COL5A1COL4A1IGF1是CAVD进展中的关键基因。CAVD的发生发展与细胞外基质重塑、巨噬细胞浸润密切相关。细胞外基质调控基因可能可以作为早期CAVD的生物标志物以及CAVD防治的靶标。
  • 加载中
  • 图 1  差异表达基因(DEGs)

    Figure 1.  Differentially expressed genes(DEGs)

    图 2  GO和KEGG富集分析

    Figure 2.  GOandKEGGenrichmentanalysis

    图 3  DEGs的PPI网络和MCODE模块分析

    Figure 3.  PPI network and MCODE module analysis of DEGs

    图 4  关键基因的PPI网络和KEGG富集途径

    Figure 4.  PPI network and KEGG enrichment pathway of key genes

    图 5  CIBERSORT分析22种免疫细胞在正常组织与CAVD瓣膜组织中浸润情况

    Figure 5.  The infiltration of 22 kinds of immune cells in normal and CAVD valve tissues analysedby CIBERSORT

  • [1]

    Yadgir S, Johnson CO, Aboyans V, et al. Global, regional, and national burden of calcific aortic valve and degenerative mitral valve diseases, 1990-2017[J]. Circulation, 2020, 141(21): 1670-1680. doi: 10.1161/CIRCULATIONAHA.119.043391

    [2]

    Yi B, Zeng W, Lv L, et al. Changing epidemiology of calcific aortic valve disease: 30-year trends of incidence, prevalence, and deaths across 204 countries and territories[J]. Aging(Albany NY), 2021, 13(9): 12710-12732.

    [3]

    林锐, 王媛, 周宁, 等. 机器学习确定特征性生物标志物预测主动脉瓣置换术后不良心血管事件[J]. 临床心血管病杂志, 2021, 37(3): 248-253. https://www.cnki.com.cn/Article/CJFDTOTAL-LCXB202103013.htm

    [4]

    Blaser MC, Kraler S, Lüscher TF, et al. Multi-omics approaches to define calcific aortic valve disease pathogenesis[J]. Circ Res, 2021, 128(9): 1371-1397. doi: 10.1161/CIRCRESAHA.120.317979

    [5]

    Kostyunin AE, Yuzhalin AE, Ovcharenko EA, et al. Development of calcific aortic valve disease: Do we know enough for new clinical trials?[J]. J Mol Cell Cardiol, 2019, 132: 189-209. doi: 10.1016/j.yjmcc.2019.05.016

    [6]

    Youssef A, Clark JR, Koschinsky ML, et al. Lipoprotein(a): Expanding our knowledge of aortic valve narrowing[J]. Trends Cardiovasc Med, 2021, 31(5): 305-311. doi: 10.1016/j.tcm.2020.06.001

    [7]

    Shuvy M, Abedat S, Eliaz R, et al. Hyperphosphatemia is required for initiation but not propagation of kidney failure-induced calcific aortic valve disease[J]. Am J Physiol Heart Circ Physiol, 2019, 317(4): H695-H704. doi: 10.1152/ajpheart.00765.2018

    [8]

    Edgar R, Domrachev M, Lash AE. Gene expression omnibus: NCBI gene expression and hybridization array data repository[J]. Nucleic Acids Res, 2002, 30(1): 207-210. doi: 10.1093/nar/30.1.207

    [9]

    Kostyunin A, Mukhamadiyarov R, Glushkova T, et al. Ultrastructural pathology of atherosclerosis, calcific aortic valve disease, and bioprosthetic heart valve degeneration: commonalities and differences[J]. Int J Mol Sci, 2020, 21(20): 100.

    [10]

    Boyle EA, Li YI, Pritchard JK. An expanded view of complex traits: from polygenic to omnigenic[J]. Cell, 2017, 169(7): 1177-1186. doi: 10.1016/j.cell.2017.05.038

    [11]

    Kirkness MW, Lehmann K, Forde NR. Mechanics and structural stability of the collagen triple helix[J]. Curr Opin Chem Biol, 2019, 53: 98-105. doi: 10.1016/j.cbpa.2019.08.001

    [12]

    Uchida Y, Shimoyama E, Hiruta N, et al. Detection of early stage of human coronary atherosclerosis by angioscopic imaging of collagen subtypes[J]. J Cardiol, 2021, 77(5): 452-456. doi: 10.1016/j.jjcc.2020.09.011

    [13]

    Hutson HN, Marohl T, Anderson M, et al. Calcific aortic valve disease is associated with layer-specific alterations in collagen architecture[J]. PLoS One, 2016, 11(9): e0163858. doi: 10.1371/journal.pone.0163858

    [14]

    Perrotta I, Davoli M. Collagen mineralization in human aortic valve stenosis: a field emission scanning electron microscopy and energy dispersive spectroscopy analysis[J]. Ultrastruct Pathol, 2014, 38(4): 281-284. doi: 10.3109/01913123.2014.901468

    [15]

    李春芝, 闫莉, 赵茜, 等. 老年心脏瓣膜钙化与血清胰岛素样生长因子-1的相关性[J]. 临床心血管病杂志, 2015, 31(4): 425-427. https://www.cnki.com.cn/Article/CJFDTOTAL-LCXB201504022.htm

    [16]

    Xiao H, Huang X, Wang S, et al. Metformin ameliorates bleomycin-induced pulmonary fibrosis in mice by suppressing IGF-1[J]. Am J Transl Res, 2020, 12(3): 940-949. doi: 10.1097/01.ccm.0000643508.83802.5f

    [17]

    Swaminathan G, Krishnamurthy VK, Sridhar S, et al. Hypoxia stimulates synthesis of neutrophil gelatinase-associated lipocalin in aortic valve disease[J]. Front Cardiovasc Med, 2019, 6: 156. doi: 10.3389/fcvm.2019.00156

    [18]

    Perrotta I, Sciangula A, Aquila S, et al. Matrix metalloproteinase-9 expression in calcified human aortic valves: a histopathologic, immunohistochemical, and ultrastructural study[J]. Appl Immunohistochem Mol Morphol, 2016, 24(2): 128-137. doi: 10.1097/PAI.0000000000000144

    [19]

    Zhou P, Li Q, Su S, et al. Interleukin 37 suppresses M1 macrophage Polarization through inhibition of the Notch1 and Nuclear Factor Kappa B pathways[J]. Front Cell Dev Biol, 2020, 8: 56. doi: 10.3389/fcell.2020.00056

    [20]

    Chen Y, Waqar AB, Nishijima K, et al. Macrophage-derived MMP-9 enhances the progression of atherosclerotic lesions and vascular calcification in transgenic rabbits[J]. J Cell Mol Med, 2020, 24(7): 4261-4274. doi: 10.1111/jcmm.15087

    [21]

    Grim JC, Aguado BA, Vogt BJ, et al. Secreted factors from proinflammatory macrophages promote an osteoblast-like phenotype in valvular interstitial cells[J]. Arterioscler Thromb Vasc Biol, 2020, 40(11): e296-e308. doi: 10.1161/ATVBAHA.120.315261

    [22]

    Yu X, Zhang QQ, Wang B, et al. Expression and significance of integrin α5β1 and fibronectin in atherosclerotic plaques from autopsy specimens[J]. Zhonghua Bing Li Xue Za Zhi, 2017, 46(3): 182-186. doi: 10.3760/cma.j.issn.0529-5807.2017.03.008

    [23]

    Valiente-Alandi I, Potter SJ, Salvador AM, et al. Inhibiting fibronectin attenuates fibrosis and improves cardiac function in a model of heart failure[J]. Circulation, 2018, 138(12): 1236-1252.

    [24]

    Grau JB, Poggio P, Sainger R, et al. Analysis of osteopontin levels for the identification of asymptomatic patients with calcific aortic valve disease[J]. Ann Thorac Surg, 2012, 93(1): 79-86. doi: 10.1016/j.athoracsur.2011.08.036

    [25]

    Lutz M, von Ingersleben N, Lambers M, et al. Osteopontin predicts clinical outcome in patients after treatment of severe aortic stenosis with transcatheter aortic valve implantation(TAVI)[J]. Open Heart, 2017, 4(2): e000633. doi: 10.1136/openhrt-2017-000633

    [26]

    Li J, Yousefi K, Ding W, et al. Osteopontin RNA aptamer can prevent and reverse pressure overload-induced heart failure[J]. Cardiovasc Res, 2017, 113(6): 633-643. doi: 10.1093/cvr/cvx016

    [27]

    Hsu CH, Liu IF, Kuo HF, et al. miR-29a-3p/THBS2 axis regulates PAH-induced cardiac fibrosis[J]. Int J Mol Sci, 2021, 22(19): 100.

  • 加载中

(5)

计量
  • 文章访问数:  1277
  • PDF下载数:  455
  • 施引文献:  0
出版历程
收稿日期:  2021-10-15
刊出日期:  2022-03-13

目录