Advances in studies of volumetric regulatory anion channels in cardiovascular diseases
-
摘要: 容积调控阴离子通道是由渗透压变化激活的一种调控细胞体积的阴离子(主要是氯离子)通道。研究显示,容积调控阴离子通道在心房和心室的心肌细胞、血管平滑肌细胞以及内皮细胞中都有充分表达。本文回顾了其在心肌肥厚、充血性心力衰竭、心肌缺血/再灌注损伤、动脉粥样硬化、高血压病血管重塑中的作用,探讨容积调控阴离子通道作为心血管疾病治疗新靶点的可行性。Abstract: Volume-regulated anion channels(VRACs) are chloride channels activated in response to osmotic stress to regulate cellular volume and also participate in other cellular processes, including cell division and cell death. Studies have demonstrated the abundant expression and pleiotropy of VRACs in cardiac atrial and ventricular myocytes, vascular smooth muscle cells, and endothelial cells. This article reviewed the research process of VRACs and highlight the recent advances in the study of VRACs in the cardiovascular system and discuss their critical roles in myocardial hypertrophy and congestive heart failure, ischemia/reperfusion injury, atherosclerosis and vascular remodeling during hypertension to discuss the possibilities of VRACs as a new target to treat cardiovascular disease. We made a point that we should explore more specific molecular mechanisms of VRACs in cardiovascular disease. Meanwhile, more credible VRACs molecular could be detected in the future.
-
[1] Cahalan MD, Lewis RS. Role of potassium and chloride channels in volume regulation by T lymphocytes[J]. Soc Gen Physiol Ser, 1988, 43: 281-301.
[2] Hazama A, Okada Y. Ca2+ sensitivity of volume-regulatory K+ and Cl-channels in cultured human epithelial cells[J]. J Physiol, 1988, 402: 687-702. doi: 10.1113/jphysiol.1988.sp017229
[3] Strange K, Yamada T, Denton JS. A 30-year journey from volume-regulated anion currents to molecular structure of the LRRC8 channel[J]. J Gen Physiol, 2019, 151(2): 100-117. doi: 10.1085/jgp.201812138
[4] Tilly BC. Expression and regulation of chloride channels in neonatal rat cardiomyocytes[J]. Mol Cell Biochem, 1996, 157(1-2): 129-135. doi: 10.1007/BF00227891
[5] Nilius B. Role of Rho and Rho kinase in the activation of volume-regulated anion channels in bovine endothelial cells[J]. J Physiol, 1999, 516(Pt 1): 67-74. doi: 10.1111/j.1469-7793.1999.067aa.x
[6] Nilius B. Myosin light chain phosphorylation-dependent modulation of volume-regulated anion channels in macrovascular endothelium[J]. FEBS Lett, 2000, 466(2-3): 346-350. doi: 10.1016/S0014-5793(00)01097-8
[7] Carton I, Trouet D, Hermans D, et al. RhoA exerts a permissive effect on volume-regulated anion channels in vascular endothelial cells[J]. Am J Physiol Cell Physiol, 2002, 283(1): C115-125. doi: 10.1152/ajpcell.00038.2001
[8] Duan D. Molecular identification of a volume-regulated chloride channel[J]. Nature, 1997, 390(6658): 417-421. doi: 10.1038/37151
[9] Duan D. A serine residue in ClC-3 links phosphorylation-dephosphorylation to chloride channel regulation by cell volume[J]. J Gen Physiol, 1999, 113(1): 57-70. doi: 10.1085/jgp.113.1.57
[10] Gong W. ClC-3-independent, PKC-dependent activity of volume-sensitive Cl channel in mouse ventricular cardiomyocytes[J]. Cell Physiol Biochem, 2004, 14(4-6): 213-224. doi: 10.1159/000080330
[11] Wang GX. Functional effects of novel anti-ClC-3 antibodies on native volume-sensitive osmolyte and anion channels in cardiac and smooth muscle cells[J]. Am J Physiol Heart Circ Physiol, 2003, 285(4): H1453-1463. doi: 10.1152/ajpheart.00244.2003
[12] Okada, Y. Cell volume-activated and volume-correlated anion channels in mammalian cells: their biophysical, molecular, and pharmacological properties[J]. Pharmacol Rev, 2019, 71(1): 49-88. doi: 10.1124/pr.118.015917
[13] Okada Y. Roles of volume-regulatory anion channels, VSOR and Maxi-Cl, in apoptosis, cisplatin resistance, necrosis, ischemic cell death, stroke and myocardial infarction[J]. Curr Top Membr, 2019, 83: 205-283.
[14] Qiu Z. SWELL1, a plasma membrane protein, is an essential component of volume-regulated anion channel[J]. Cell, 2014, 157(2): 447-458. doi: 10.1016/j.cell.2014.03.024
[15] Kefauver JM, Saotome K, Dubin AE, et al. Structure of the human volume regulated anion channel[J]. Elife, 2018, 100: 7. doi: 10.1101/323584
[16] Syeda R. LRRC8 proteins form volume-regulated anion channels that sense ionic strength[J]. Cell, 2016, 164(3): 499-511. doi: 10.1016/j.cell.2015.12.031
[17] Wang L, Shen M, Guo X, et al. Volume-sensitive outwardly rectifying chloride channel blockers protect against high glucose-induced apoptosis of cardiomyocytes via autophagy activation[J]. Sci Rep, 2017, 7: 44265. doi: 10.1038/srep44265
[18] Gradogna A, Gavazzo P, Boccaccio A, et al. Subunit-dependent oxidative stress sensitivity of LRRC8 volume-regulated anion channels[J]. J Physiol, 2017, 595(21): 6719-6733. doi: 10.1113/JP274795
[19] Xie L. Induction of adipose and hepatic SWELL1 expression is required for maintaining systemic insulin-sensitivity in obesity[J]. Channels(Austin), 2017, 11(6): 673-677.
[20] Zhang Y. SWELL1 is a regulator of adipocyte size, insulin signalling and glucose homeostasis[J]. Nat Cell Biol, 2017, 19(5): 504-517. doi: 10.1038/ncb3514
[21] Ghosh A. Leucine-rich repeat-containing 8B protein is associated with the endoplasmic reticulum Ca(2+)leak in HEK293 cells[J]. J Cell Sci, 2017, 130(22): 3818-3828.
[22] Voss FK. Identification of LRRC8 heteromers as an essential component of the volume-regulated anion channel VRAC[J]. Science, 2014, 344(6184): 634-638. doi: 10.1126/science.1252826
[23] Clemo HF, Stambler BS, Baumgarten CM. Swelling-activated chloride current is persistently activated in ventricular myocytes from dogs with tachycardia-induced congestive heart failure[J]. Circ Res, 1999, 84(2): 157-165. doi: 10.1161/01.RES.84.2.157
[24] Yamamoto S, Ichishima K, Ehara T. Reduced volume-regulated outwardly rectifying anion channel activity in ventricular myocyte of type 1 diabetic mice[J]. J Physiol Sci, 2009, 59(2): 87-96. doi: 10.1007/s12576-008-0012-8
[25] Yamamoto S, Ichishima K, Ehara T. Regulation of volume-regulated outwardly rectifying anion channels by phosphatidylinositol 3, 4, 5-trisphosphate in mouse ventricular cells[J]. Biomed Res, 2008, 29(6): 307-315. doi: 10.2220/biomedres.29.307
[26] Xiong D. Cardiac-specific, inducible ClC-3 gene deletion eliminates native volume-sensitive chloride channels and produces myocardial hypertrophy in adult mice[J]. J Mol Cell Cardiol, 2010, 48(1): 211-219. doi: 10.1016/j.yjmcc.2009.07.003
[27] Shen M, Wang L, Wang B, et al. Activation of volume-sensitive outwardly rectifying chloride channel by ROS contributes to ER stress and cardiac contractile dysfunction: involvement of CHOP through Wnt[J]. Cell Death Dis, 2014, 5: e1528. doi: 10.1038/cddis.2014.479
[28] Chen H. Targeted inactivation of cystic fibrosis transmembrane conductance regulator chloride channel gene prevents ischemic preconditioning in isolated mouse heart[J]. Circulation, 2004, 110(6): 700-704. doi: 10.1161/01.CIR.0000138110.84758.BB
[29] Xiang SY, Ye LL, Duan LL, et al. Characterization of a critical role for CFTR chloride channels in cardioprotection against ischemia/reperfusion injury[J]. Acta Pharmacol Sin, 2011, 32(6): 824-833. doi: 10.1038/aps.2011.61
[30] Bozeat ND, Xiang SY, Ye LL, et al. Activation of volume regulated chloride channels protects myocardium from ischemia/reperfusion damage in second-window ischemic preconditioning[J]. Cell Physiol Biochem, 2011, 28(6): 1265-1278. doi: 10.1159/000335858
[31] Wang X. Chloride channel inhibition prevents ROS-dependent apoptosis induced by ischemia-reperfusion in mouse cardiomyocytes[J]. Cell Physiol Biochem, 2005, 16(4-6): 147-154. doi: 10.1159/000089840
[32] Xia Y. Activation of volume-sensitive Cl-channel mediates autophagy-related cell death in myocardial ischaemia/reperfusion injury[J]. Oncotarget, 2016, 7(26): 39345-39362. doi: 10.18632/oncotarget.10050
[33] Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis[J]. Nature, 2011, 473(7347): 317-325. doi: 10.1038/nature10146
[34] Zhang S, Li L, Chen W, et al. Natural products: The role and mechanism in low-density lipoprotein oxidation and atherosclerosis[J]. Phytother Res, 2021, 35(6): 2945-2967. doi: 10.1002/ptr.7002
[35] Romanenko VG, Davies PF, Levitan I. Dual effect of fluid shear stress on volume-regulated anion current in bovine aortic endothelial cells[J]. Am J Physiol Cell Physiol, 2002, 282(4): C708-718. doi: 10.1152/ajpcell.00247.2001
[36] Hong L. Alteration of volume-regulated chloride channel during macrophage-derived foam cell formation in atherosclerosis[J]. Atherosclerosis, 2011, 216(1): 59-66. doi: 10.1016/j.atherosclerosis.2011.01.035
[37] Tao J, Liu CZ, Yang J, et al. ClC-3 deficiency prevents atherosclerotic lesion development in ApoE-/-mice[J]. J Mol Cell Cardiol, 2015, 87: 237-247. doi: 10.1016/j.yjmcc.2015.09.002
[38] Kang XL. Differences between femoral artery and vein smooth muscle cells in volume-regulated chloride channels[J]. Can J Physiol Pharmacol, 2012, 90(11): 1516-1526. doi: 10.1139/y2012-117
[39] Tang YB, Zhou JG, Guan YY. Volume-regulated chloride channels and cerebral vascular remodelling[J]. Clin Exp Pharmacol Physiol, 2010, 37(2): 238-242. doi: 10.1111/j.1440-1681.2008.05137.x
[40] Liu CZ. Endophilin A2 Influences Volume-Regulated Chloride Current by Mediating ClC-3 Trafficking in Vascular Smooth Muscle Cells[J]. Circ J, 2016, 80(11): 2397-2406. doi: 10.1253/circj.CJ-16-0793
[41] Liu YJ. Simvastatin ameliorates rat cerebrovascular remodeling during hypertension via inhibition of volume-regulated chloride channel[J]. Hypertension, 2010, 56(3): 445-452. doi: 10.1161/HYPERTENSIONAHA.110.150102
[42] Browe DM, Baumgarten CM. Angiotensin Ⅱ(AT1) receptors and NADPH oxidase regulate Cl-current elicited by beta1 integrin stretch in rabbit ventricular myocytes[J]. J Gen Physiol, 2004, 124(3): 273-287. doi: 10.1085/jgp.200409040
[43] Shimizu T, Numata T, Okada Y. A role of reactive oxygen species in apoptotic activation of volume-sensitive Cl(-)channel[J]. Proc Natl Acad Sci USA, 2004, 101(17): 6770-6773. doi: 10.1073/pnas.0401604101
[44] Varela D. NAD(P)H oxidase-derived H(2) O(2) signals chloride channel activation in cell volume regulation and cell proliferation[J]. J Biol Chem, 2004, 279(14): 13301-13304. doi: 10.1074/jbc.C400020200
[45] Friard J, Laurain A, Rubera I, et al. LRRC8/VRAC Channels and the Redox Balance: A Complex Relationship[J]. Cell Physiol Biochem, 2021, 55(S1): 106-118. doi: 10.33594/000000341
[46] Lemonnier L, Shuba Y, Crepin A, et al. Bcl-2-dependent modulation of swelling-activated Cl-current and ClC-3 expression in human prostate cancer epithelial cells[J]. Cancer Res, 2004, 64(14): 4841-4848. doi: 10.1158/0008-5472.CAN-03-3223
[47] Zhou JG. Regulation of intracellular Cl-concentration through volume-regulated ClC-3 chloride channels in A10 vascular smooth muscle cells[J]. J Biol Chem, 2005, 280(8): 7301-7308. doi: 10.1074/jbc.M412813200
[48] Zhang YP, Ye LL, Yuan H, et al. CFTR plays an important role in the regulation of vascular resistance and high-fructose/salt-diet induced hypertension in mice[J]. J Cyst Fibros, 2021, 20(3): 516-524. doi: 10.1016/j.jcf.2020.11.014
[49] Duan DD. Volume matters: novel roles of the volume-regulated CLC-3 channels in hypertension-induced cerebrovascular remodeling[J]. Hypertension, 2010, 56(3): 346-348. doi: 10.1161/HYPERTENSIONAHA.110.155770
[50] Duan DD. The ClC-3 chloride channels in cardiovascular disease[J]. Acta Pharmacol Sin, 2011, 32(6): 675-684. doi: 10.1038/aps.2011.30
计量
- 文章访问数: 1756
- PDF下载数: 819
- 施引文献: 0