异种心脏移植与无线心室辅助装置

刘金平, 张力. 异种心脏移植与无线心室辅助装置[J]. 临床心血管病杂志, 2022, 38(4): 261-264. doi: 10.13201/j.issn.1001-1439.2022.04.001
引用本文: 刘金平, 张力. 异种心脏移植与无线心室辅助装置[J]. 临床心血管病杂志, 2022, 38(4): 261-264. doi: 10.13201/j.issn.1001-1439.2022.04.001
LIU Jinping, ZHANG Li. Cardiac xenotransplantation and wireless left ventricular assist device[J]. J Clin Cardiol, 2022, 38(4): 261-264. doi: 10.13201/j.issn.1001-1439.2022.04.001
Citation: LIU Jinping, ZHANG Li. Cardiac xenotransplantation and wireless left ventricular assist device[J]. J Clin Cardiol, 2022, 38(4): 261-264. doi: 10.13201/j.issn.1001-1439.2022.04.001

异种心脏移植与无线心室辅助装置

  • 基金项目:
    国家自然科学基金项目(No:82100412);湖北省重点研发计划(No:2020BCB053)
详细信息

Cardiac xenotransplantation and wireless left ventricular assist device

More Information
  • 心力衰竭(心衰)日益成为人类健康的主要威胁,供体器官的缺乏以及常规心室辅助装置的负担,使心衰的治疗难以兼顾患者的生存率和生活质量。近年来,在基因编辑技术的推动下,异种心脏移植克服了免疫排斥、凝血功能失调、炎症及缺血再灌注损伤以及猪内源性逆转录病毒等多重障碍;同时随着医疗器械技术的进步,心室辅助装置逐步实现微型化、无线化。这些技术的进步将为心衰患者提供新的治疗策略。
  • 加载中
  • [1]

    Virani SS, Alonso A, Aparicio HJ, et al. Heart Disease and Stroke Statistics-2021 Update: A Report From the American Heart Association[J]. Circulation, 2021, 143(8): e254-e743.

    [2]

    中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2020概要[J]. 中国循环杂志, 2021, 36(6): 521-545. doi: 10.3969/j.issn.1000-3614.2021.06.001

    [3]

    Stehlik J, Kobashigawa J, Hunt SA, et al. Honoring 50 Years of Clinical Heart Transplantation in Circulation: In-Depth State-of-the-Art Review[J]. Circulation, 2018, 137(1): 71-87. doi: 10.1161/CIRCULATIONAHA.117.029753

    [4]

    Lu T, Yang B, Wang R, et al. Xenotransplantation: Current Status in Preclinical Research[J]. Front Immunol, 2019, 10: 3060.

    [5]

    Park MY, Krishna Vasamsetti BM, Kim WS, et al. Comprehensive Analysis of Cardiac Xeno-Graft Unveils Rejection Mechanisms[J]. Int J Mol Sci, 2021, 22(2).

    [6]

    Längin M, Mayr T, Reichart B, et al. Consistent success in life-supporting porcine cardiac xenotransplantation[J]. Nature, 2018, 564(7736): 430-433. doi: 10.1038/s41586-018-0765-z

    [7]

    Niu D, Ma X, Yuan T, et al. Porcine genome engineering for xenotransplantation[J]. Adv Drug Deliv Rev, 2021, 168: 229-245. doi: 10.1016/j.addr.2020.04.001

    [8]

    Lai L, Kolber-Simonds D, Park KW, et al. Production of alpha-1, 3-galactosyltransferase knockout pigs by nuclear transfer cloning[J]. Science, 2002, 295(5557): 1089-1092. doi: 10.1126/science.1068228

    [9]

    Dai Y, Vaught TD, Boone J, et al. Targeted disruption of the alpha1, 3-galactosyltransferase gene in cloned pigs[J]. Nat Biotechnol, 2002, 20(3): 251-255. doi: 10.1038/nbt0302-251

    [10]

    Lutz AJ, Li P, Estrada JL, et al. Double knockout pigs deficient in N-glycolylneuraminic acid and galactose α-1, 3-galactose reduce the humoral barrier to xenotransplantation[J]. Xenotransplantation, 2013, 20(1): 27-35. doi: 10.1111/xen.12019

    [11]

    Estrada JL, Martens G, Li P, et al. Evaluation of human and non-human primate antibody binding to pig cells lacking GGTA1/CMAH/β4GalNT2 genes[J]. Xenotransplantation, 2015, 22(3): 194-202. doi: 10.1111/xen.12161

    [12]

    Pierson RN 3rd, Fishman JA, Lewis GD, et al. Progress Toward Cardiac Xenotransplantation[J]. Circulation, 2020, 142(14): 1389-1398. doi: 10.1161/CIRCULATIONAHA.120.048186

    [13]

    Yamada K, Yazawa K, Shimizu A, et al. Marked prolongation of porcine renal xenograft survival in baboons through the use of alpha1, 3-galactosyltransferase gene-knockout donors and the cotransplantation of vascularized thymic tissue[J]. Nat Med, 2005, 11(1): 32-34. doi: 10.1038/nm1172

    [14]

    Mohiuddin MM, Singh AK, Corcoran PC, et al. Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO. hCD46. hTBM pig-to-primate cardiac xenograft[J]. Nat Commun, 2016, 7: 11138. doi: 10.1038/ncomms11138

    [15]

    Ide K, Wang H, Tahara H, et al. Role for CD47-SIRPalpha signaling in xenograft rejection by macrophages[J]. Proc Natl Acad Sci U S A, 2007, 104(12): 5062-50666. doi: 10.1073/pnas.0609661104

    [16]

    Chan JL, Singh AK, Corcoran PC, et al. Encouraging experience using multi-transgenic xenografts in a pig-to-baboon cardiac xenotransplantation model[J]. Xenotransplantation, 2017 Nov, 24(6).

    [17]

    Wang L, Cooper D, Burdorf L, et al. Overcoming Coagulation Dysregulation in Pig Solid Organ Transplantation in Nonhuman Primates: Recent Progress[J]. Transplantation, 2018, 102(7): 1050-1058. doi: 10.1097/TP.0000000000002171

    [18]

    Ezzelarab MB, Ekser B, Azimzadeh A, et al. Systemic inflammation in xenograft recipients precedes activation of coagulation[J]. Xenotransplantation, 2015, 22(1): 32-47. doi: 10.1111/xen.12133

    [19]

    Nakamura K, Zhang M, Kageyama S, et al. Macrophage heme oxygenase-1-SIRT1-p53 axis regulates sterile inflammation in liver ischemia-reperfusion injury[J]. J Hepatol, 2017, 67(6): 1232-1242. doi: 10.1016/j.jhep.2017.08.010

    [20]

    Niu D, Wei HJ, Lin L, et al. Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9[J]. Science, 2017, 357(6357): 1303-1307. doi: 10.1126/science.aan4187

    [21]

    Vieira JL, Ventura HO, Mehra MR. Mechanical circulatory support devices in advanced heart failure: 2020 and beyond[J]. Prog Cardiovasc Dis, 2020, 63(5): 630-639. doi: 10.1016/j.pcad.2020.09.003

    [22]

    Molina EJ, Shah P, Kiernan MS, et al. The Society of Thoracic Surgeons Intermacs 2020 Annual Report[J]. Ann Thorac Surg, 2021, 111(3): 778-792. doi: 10.1016/j.athoracsur.2020.12.038

    [23]

    Gustafsson F, Netuka I. Interplay of pump design elements and bleeding predilection-Mechanisms for a forward momentum[J]. J Heart Lung Transplant, 2019, 38(8): 817-819. doi: 10.1016/j.healun.2019.06.002

    [24]

    Shah P, Birk SE, Cooper LB, et al. Stroke and death risk in ventricular assist device patients varies by ISHLT infection category: An INTERMACS analysis[J]. J Heart Lung Transplant, 2019, 38(7): 721-730. doi: 10.1016/j.healun.2019.02.006

    [25]

    Pya Y, Maly J, Bekbossynova M, et al. First human use of a wireless coplanar energy transfer coupled with a continuous-flow left ventricular assist device[J]. J Heart Lung Transplant, 2019, 38(4): 339-343. doi: 10.1016/j.healun.2019.01.1316

    [26]

    Pya Y, Abdiorazova A. Elimination of drive exit line: transcutaneous energy transmission[J]. Ann Cardiothorac Surg, 2021, 10(3): 393-395. doi: 10.21037/acs-2020-cfmcs-200

  • 加载中
计量
  • 文章访问数:  1228
  • PDF下载数:  600
  • 施引文献:  0
出版历程
收稿日期:  2022-03-15
刊出日期:  2022-04-13

目录