-
摘要: 心力衰竭(心衰)日益成为人类健康的主要威胁,供体器官的缺乏以及常规心室辅助装置的负担,使心衰的治疗难以兼顾患者的生存率和生活质量。近年来,在基因编辑技术的推动下,异种心脏移植克服了免疫排斥、凝血功能失调、炎症及缺血再灌注损伤以及猪内源性逆转录病毒等多重障碍;同时随着医疗器械技术的进步,心室辅助装置逐步实现微型化、无线化。这些技术的进步将为心衰患者提供新的治疗策略。Abstract: Heart failure is increasingly becoming a major threat to human health. Due to the lack of donor organs and the burden of conventional ventricular assist devices, it is difficult to pursue both the survival rate and quality of life of patients in treating heart failure. In recent years, driven by gene-editing technology, cardiac xenotransplantation has overcome multiple barriers, such as immune rejection, coagulation dysfunction, inflammation and ischemia-reperfusion injury, and porcine endogenous retroviruses. At the same time, with the advancement of medical device technology, ventricular assist devices have gradually achieved miniaturization and wireless.These technological advances will provide new treatment strategies for patients with heart failure.
-
Key words:
- heart failure /
- cardiac xenotransplantation /
- ventricular assist devices
-
[1] Virani SS, Alonso A, Aparicio HJ, et al. Heart Disease and Stroke Statistics-2021 Update: A Report From the American Heart Association[J]. Circulation, 2021, 143(8): e254-e743.
[2] 中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2020概要[J]. 中国循环杂志, 2021, 36(6): 521-545. doi: 10.3969/j.issn.1000-3614.2021.06.001
[3] Stehlik J, Kobashigawa J, Hunt SA, et al. Honoring 50 Years of Clinical Heart Transplantation in Circulation: In-Depth State-of-the-Art Review[J]. Circulation, 2018, 137(1): 71-87. doi: 10.1161/CIRCULATIONAHA.117.029753
[4] Lu T, Yang B, Wang R, et al. Xenotransplantation: Current Status in Preclinical Research[J]. Front Immunol, 2019, 10: 3060.
[5] Park MY, Krishna Vasamsetti BM, Kim WS, et al. Comprehensive Analysis of Cardiac Xeno-Graft Unveils Rejection Mechanisms[J]. Int J Mol Sci, 2021, 22(2).
[6] Längin M, Mayr T, Reichart B, et al. Consistent success in life-supporting porcine cardiac xenotransplantation[J]. Nature, 2018, 564(7736): 430-433. doi: 10.1038/s41586-018-0765-z
[7] Niu D, Ma X, Yuan T, et al. Porcine genome engineering for xenotransplantation[J]. Adv Drug Deliv Rev, 2021, 168: 229-245. doi: 10.1016/j.addr.2020.04.001
[8] Lai L, Kolber-Simonds D, Park KW, et al. Production of alpha-1, 3-galactosyltransferase knockout pigs by nuclear transfer cloning[J]. Science, 2002, 295(5557): 1089-1092. doi: 10.1126/science.1068228
[9] Dai Y, Vaught TD, Boone J, et al. Targeted disruption of the alpha1, 3-galactosyltransferase gene in cloned pigs[J]. Nat Biotechnol, 2002, 20(3): 251-255. doi: 10.1038/nbt0302-251
[10] Lutz AJ, Li P, Estrada JL, et al. Double knockout pigs deficient in N-glycolylneuraminic acid and galactose α-1, 3-galactose reduce the humoral barrier to xenotransplantation[J]. Xenotransplantation, 2013, 20(1): 27-35. doi: 10.1111/xen.12019
[11] Estrada JL, Martens G, Li P, et al. Evaluation of human and non-human primate antibody binding to pig cells lacking GGTA1/CMAH/β4GalNT2 genes[J]. Xenotransplantation, 2015, 22(3): 194-202. doi: 10.1111/xen.12161
[12] Pierson RN 3rd, Fishman JA, Lewis GD, et al. Progress Toward Cardiac Xenotransplantation[J]. Circulation, 2020, 142(14): 1389-1398. doi: 10.1161/CIRCULATIONAHA.120.048186
[13] Yamada K, Yazawa K, Shimizu A, et al. Marked prolongation of porcine renal xenograft survival in baboons through the use of alpha1, 3-galactosyltransferase gene-knockout donors and the cotransplantation of vascularized thymic tissue[J]. Nat Med, 2005, 11(1): 32-34. doi: 10.1038/nm1172
[14] Mohiuddin MM, Singh AK, Corcoran PC, et al. Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO. hCD46. hTBM pig-to-primate cardiac xenograft[J]. Nat Commun, 2016, 7: 11138. doi: 10.1038/ncomms11138
[15] Ide K, Wang H, Tahara H, et al. Role for CD47-SIRPalpha signaling in xenograft rejection by macrophages[J]. Proc Natl Acad Sci U S A, 2007, 104(12): 5062-50666. doi: 10.1073/pnas.0609661104
[16] Chan JL, Singh AK, Corcoran PC, et al. Encouraging experience using multi-transgenic xenografts in a pig-to-baboon cardiac xenotransplantation model[J]. Xenotransplantation, 2017 Nov, 24(6).
[17] Wang L, Cooper D, Burdorf L, et al. Overcoming Coagulation Dysregulation in Pig Solid Organ Transplantation in Nonhuman Primates: Recent Progress[J]. Transplantation, 2018, 102(7): 1050-1058. doi: 10.1097/TP.0000000000002171
[18] Ezzelarab MB, Ekser B, Azimzadeh A, et al. Systemic inflammation in xenograft recipients precedes activation of coagulation[J]. Xenotransplantation, 2015, 22(1): 32-47. doi: 10.1111/xen.12133
[19] Nakamura K, Zhang M, Kageyama S, et al. Macrophage heme oxygenase-1-SIRT1-p53 axis regulates sterile inflammation in liver ischemia-reperfusion injury[J]. J Hepatol, 2017, 67(6): 1232-1242. doi: 10.1016/j.jhep.2017.08.010
[20] Niu D, Wei HJ, Lin L, et al. Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9[J]. Science, 2017, 357(6357): 1303-1307. doi: 10.1126/science.aan4187
[21] Vieira JL, Ventura HO, Mehra MR. Mechanical circulatory support devices in advanced heart failure: 2020 and beyond[J]. Prog Cardiovasc Dis, 2020, 63(5): 630-639. doi: 10.1016/j.pcad.2020.09.003
[22] Molina EJ, Shah P, Kiernan MS, et al. The Society of Thoracic Surgeons Intermacs 2020 Annual Report[J]. Ann Thorac Surg, 2021, 111(3): 778-792. doi: 10.1016/j.athoracsur.2020.12.038
[23] Gustafsson F, Netuka I. Interplay of pump design elements and bleeding predilection-Mechanisms for a forward momentum[J]. J Heart Lung Transplant, 2019, 38(8): 817-819. doi: 10.1016/j.healun.2019.06.002
[24] Shah P, Birk SE, Cooper LB, et al. Stroke and death risk in ventricular assist device patients varies by ISHLT infection category: An INTERMACS analysis[J]. J Heart Lung Transplant, 2019, 38(7): 721-730. doi: 10.1016/j.healun.2019.02.006
[25] Pya Y, Maly J, Bekbossynova M, et al. First human use of a wireless coplanar energy transfer coupled with a continuous-flow left ventricular assist device[J]. J Heart Lung Transplant, 2019, 38(4): 339-343. doi: 10.1016/j.healun.2019.01.1316
[26] Pya Y, Abdiorazova A. Elimination of drive exit line: transcutaneous energy transmission[J]. Ann Cardiothorac Surg, 2021, 10(3): 393-395. doi: 10.21037/acs-2020-cfmcs-200
计量
- 文章访问数: 1414
- PDF下载数: 717
- 施引文献: 0