急性冠状动脉综合征患者血清非靶向代谢组学研究

闫奎坡, 冯娟, 朱翠玲, 等. 急性冠状动脉综合征患者血清非靶向代谢组学研究[J]. 临床心血管病杂志, 2022, 38(7): 548-556. doi: 10.13201/j.issn.1001-1439.2022.07.007
引用本文: 闫奎坡, 冯娟, 朱翠玲, 等. 急性冠状动脉综合征患者血清非靶向代谢组学研究[J]. 临床心血管病杂志, 2022, 38(7): 548-556. doi: 10.13201/j.issn.1001-1439.2022.07.007
YAN Kuipo, FENG Juan, ZHU Cuiling, et al. Non-targeted serum metabolomics study in patients with acute coronary syndrome[J]. J Clin Cardiol, 2022, 38(7): 548-556. doi: 10.13201/j.issn.1001-1439.2022.07.007
Citation: YAN Kuipo, FENG Juan, ZHU Cuiling, et al. Non-targeted serum metabolomics study in patients with acute coronary syndrome[J]. J Clin Cardiol, 2022, 38(7): 548-556. doi: 10.13201/j.issn.1001-1439.2022.07.007

急性冠状动脉综合征患者血清非靶向代谢组学研究

  • 基金项目:
    河南省首批青苗人才培养项目[No: 豫中医科教(2018)16号]; 河南省科技攻关项目(No: 192102310161、182102310291);河南省中医药科学研究专项课题(No: 2017ZY2017);河南省中医药科学研究专项课题(No: 2016ZY3003、2016ZY2051、2017ZY2017);河南省中医药科学研究专项(No: 20-21ZY1015、20-21ZY2004);河南省重点研发与推广专项(No: 192102310167)
详细信息

Non-targeted serum metabolomics study in patients with acute coronary syndrome

More Information
  • 目的 寻找急性冠状动脉(冠脉)综合征相关的潜在生物标志物,为探讨其病理生理机制提供参考依据。方法 利用高效液相色谱-质谱联用技术对急性冠脉综合征患者和冠脉正常者血清样本进行非靶向代谢组学分析,筛选出两组间差异代谢物,采用受试者工作特征曲线评价差异代谢物的诊断价值,进行差异代谢物通路分析。结果 急性冠脉综合征人群与冠脉正常人群代谢谱存在显著差异,通过受试者工作特征曲线筛选出20个差异代谢物。差异代谢物通路分析发现,急性冠脉综合征患者受干扰的代谢途径包括非酒精性脂肪肝、烟酸和烟酰胺代谢、胰岛素信号通路、FoxO信号通路、2型糖尿病、糖尿病并发症中的AGE-RAGE信号通路、胆固醇代谢、心肌细胞的肾上腺素能信号传导、氧化磷酸化。结论 筛选得到急性冠脉综合征的潜在生物标志物20个,涉及非酒精性脂肪肝、烟酸和烟酰胺代谢等13条代谢途径。
  • 加载中
  • 图 1  典型样本基峰色谱图(正离子模式)

    Figure 1.  Typical sample base peak chromatogram(positive ion mode)

    图 2  典型样本基峰色谱图(负离子模式)

    Figure 2.  Typical sample base peak chromatogram(negative ion mode)

    图 3  实验样本与QC样本的PCA图(正离子模式)

    Figure 3.  PCA plots of experimental samples and QC samples(positive ion mode)

    图 4  实验样本与QC样本的PCA图(负离子模式)

    Figure 4.  PCA diagram of experimental samples and QC samples(negative ion mode)

    图 5  血清样本的OPLS-DA得分图(左边为正离子模式,右边为负离子模式)

    Figure 5.  OPLS-DA score of serum samples(positive ion mode on the left, negative ion mode on the right)

    图 6  差异代谢物热图

    Figure 6.  Heatmap of differential metabolites

    图 7  急性冠脉综合征患者血清生物标志物构建的代谢通路

    Figure 7.  Metabolic pathways constructed by serum biomarkers in patients with acute coronary syndrome

    表 1  正负离子模式下模型参数R2X、R2Y、Q2

    Table 1.  Model parameters R2X, R2Y, Q2 values in positive and negative ion mode

    比对组 正离子模式 负离子模式
    pre R2X(cum) R2Y(cum) Q2(cum) pre R2X(cum) R2Y(cum) Q2(cum)
    D vs C 3 0.343 0.999 0.512 3 0.352 0.998 0.562
    注:pre:主成分数;R2X:模型对X变量数据集可解释度;R2Y:模型对Y变量数据集的可解释度;Q2:模型可预测度;D:实验组;C:对照组。
    下载: 导出CSV

    表 2  差异代谢物基本信息

    Table 2.  Basic information of differential metabolites

    鉴定物质 中文名称 VIP P AUC 特异度 灵敏度 FC(D/C) log2(FC) Up/Down
    Methyl jasmonate 茉莉酸甲酯 2.613661375 0.0000212 1 1 1 1.1838 0.24347
    1-Pyrroline-4-hydroxy-2-carboxylate 1-吡咯啉基-4-羟基-2-甲酸乙酯 2.553357458 0.0000135 1 1 1 0.20546 -2.2831
    Geranial 香叶醛 2.471406282 0.0000447 1 1 1 0.37048 -1.4325
    Myristic acid 肉豆蔻酸 2.288558754 0.00035126 1 0.923 1 0.85213 -0.23085
    Heptanoic acid 庚酸 1.973785906 0.005974332 1 0.923 1 1.1764 0.23443
    Glutaric acid 戊二酸 1.888055466 0.00663257 1 0.923 1 3.8199 1.9335
    Methyldopa 甲基多巴 1.782584297 0.015714848 1 0.923 1 7.1221 2.8323
    Ergocalciferol 钙化醇 2.50780231 0.0000836 0.981 0.923 1 0.55905 -0.83895
    Ursodeoxycholic acid 熊去氧胆酸 2.431963998 0.0000741 0.981 0.846 1 0.21266 -2.2334
    2-Methylbutanal 2-甲基丁醛 2.394841431 0.00011526 0.971 0.923 1 0.29557 -1.7584
    L-Tryptophan L-色氨酸 1.814754381 0.01352811 0.962 0.923 1 1.5099 0.59448
    Beta-Leucine β-亮氨酸 2.262807849 0.000876087 0.942 0.769 1 0.36188 -1.4664
    Aminocaproic acid 氨基己酸 2.026705449 0.002831395 0.942 0.769 1 0.75535 -0.40478
    Norepinephrine 去甲肾上腺素 2.022780712 0.002906188 0.942 0.923 1 1.1223 0.16648
    Pelargonic acid 壬酸 2.006880444 0.003225859 0.923 0.846 1 1.1801 0.23894
    3, 3-Dimethoxybenzidine 3’3-二甲氧基联苯胺 1.722964627 0.015617621 0.923 0.846 1 0.81238 -0.29978
    Suberic acid 辛二酸 1.680850163 0.018998759 0.923 0.923 1 3.7433 1.9043
    9, 10-DHOME 9, 10-二羟基-12(Z)- 十八碳烯酸 1.67909049 0.024683863 0.923 0.769 1 0.67184 -0.57382
    L-2-Hydroxyglutaric acid L-2-羟基戊二酸 1.453893739 0.048090985 0.923 0.769 1 4.8314 2.2724
    Glycocholic acid 甘氨胆酸 1.664600861 0.02620388 0.913 0.846 0.75 0.32061 -1.6411
    4-Quinolinecarboxylic acid 4-喹啉羧酸 1.660727769 0.020803943 0.894 0.846 0.75 4.0207 2.0074
    Succinic acid 琥珀酸 1.538375284 0.034828958 0.885 0.769 1 2.4312 1.2817
    12-Hydroxydodecanoic acid 12-羟基十二酸 2.031058316 0.004294962 0.875 1 0.75 0.23991 -2.0595
    DL-Glycerol 1-phosphate DL-甘油1-磷酸 1.909775673 0.008438434 0.875 0.923 0.75 0.58075 -0.78401
    Uridine 尿苷 1.691841244 0.018065851 0.875 0.692 1 0.34062 -1.5538
    Pyroglutamic acid 焦谷氨酸 1.607054931 0.026276433 0.865 0.769 1 0.54557 -0.87415
    Sarcosine 肌氨酸 2.0448578 0.00250559 0.846 1 0.75 0.090852 -3.4603
    Imidazole-4-acetaldehyde 咪唑-4-乙醛 2.009610412 0.003169029 0.846 1 0.75 0.22524 -2.1505
    D-Glucose D-葡萄糖 1.776976883 0.016122915 0.846 0.846 0.75 0.33039 -1.5977
    Creatine 肌酸 1.706128383 0.016907231 0.846 0.923 0.75 0.37158 -1.4283
    Ribitol 戊五醇核糖醇 1.695095446 0.023085247 0.846 0.769 1 0.53381 -0.90561
    Biotin 生物素 1.616842764 0.025203641 0.846 0.769 1 0.57732 -0.79255
    Benzamide 苯甲酰胺 1.608918913 0.02606946 0.846 0.923 0.75 0.25422 -1.9759
    Sphinganine 鞘氨醇 1.457431025 0.047469279 0.846 0.769 1 0.93425 -0.098117
    Nicotinic acid 烟酸 1.447890041 0.049160166 0.846 0.692 1 5.8827 2.5565
    Ketoleucine 酮亮氨酸 1.529183197 0.044152111 0.837 1 0.75 1.3366 0.41853
    Adipate semialdehyde 己二酸半醛 1.729157647 0.015163222 0.827 1 0.75 0.17645 -2.5027
    1, 2-Epoxy-p-menth-8-ene 柠檬烯-1, 2-环氧化物 1.605616471 0.026437023 0.827 0.846 0.75 0.23377 -2.0968
    5-Hydroxypyrazinamide 5-羟基吡嗪酰胺 1.511633383 0.038680014 0.827 0.923 0.75 2.2601 1.1764
    Pyrrolidonecarboxylic acid 吡咯烷酮羧酸 1.567836926 0.038289473 0.808 0.923 0.75 0.41675 -1.2627
    Withaferin A 醉茄素A 1.70531079 0.016971919 0.788 0.846 0.75 0.46977 -1.09
    Guanidinosuccinic acid 胍基琥珀酸 1.60642627 0.033046828 0.788 0.923 0.75 0.49889 -1.0032
    Niacinamide 烟酰胺 1.548295864 0.04117419 0.779 0.769 1 1.2493 0.32114
    Maslinic acid 马斯里酸 1.566941246 0.038418236 0.76 0.846 0.75 0.10312 -3.2776
    Methionine sulfoximine 蛋氨酸磺酸盐 1.467500228 0.045732623 0.75 1 0.5 0.10929 -3.1937
    Carnosine 肌肽 1.675920044 0.019429262 0.74 1 0.5 0.30913 -1.6937
    注:VIP:OPLS-DA第一主成分变量权重值;FC(fold change):倍性变化;log2(FC):倍性变化的log2值;Up:代谢物高表达(上调);Down:代谢物低表达(下调)。
    下载: 导出CSV

    表 3  通路影响因子表

    Table 3.  Pathway Influencing Factors Table

    通路名称 -log(P) 代谢通路影响值 代谢物 代谢通路KEGG ID
    Non-alcoholic fatty liver disease 3.593 0.5 C00031 hsa04932
    Nicotinate and nicotinamide metabolism 3.2309 0.25116 C00042;C00153;C00253 hsa00760
    Insulin signaling pathway 2.9134 0.25 C00031 hsa04910
    FoxO signaling pathway 2.6971 0.2 C00031 hsa04068
    Type II diabetes mellitus 2.5215 0.16667 C00031 hsa04930
    Prolactin signaling pathway 1.9488 0.15789 C00031 hsa04917
    Insulin secretion 1.8685 0.15 C00031 hsa04911
    Biotin metabolism 1.1258 0.14062 C00120 hsa00780
    Vascular smooth muscle contraction 2.2472 0.125 C00547 hsa04270
    AGE-RAGE signaling pathway in diabetic complications 2.1362 0.11111 C00031 hsa04933
    Cholesterol metabolism 2.0375 0.1 C01921 hsa04979
    Adrenergic signaling in cardiomyocytes 2.0375 0.1 C00547 hsa04261
    Oxidative phosphorylation 1.6073 0.1 C00042 hsa00190
    D-Glutamine and D-glutamate metabolism 1.7951 0.095238 C02237 hsa00471
    Gap junction 1.9488 0.090909 C00547 hsa04540
    Synaptic vesicle cycle 1.8685 0.083333 C00547 hsa04721
    Insulin resistance 1.4104 0.083333 C00031 hsa04931
    Central carbon metabolism in cancer 4.2753 0.075472 C00031;C00042;C00078 hsa05230
    cAMP signaling pathway 3.0788 0.074074 C00042;C00547 hsa04024
    Histidine metabolism 1.986 0.072 C00386;C05130 hsa00340
    Sphingolipid signaling pathway 1.6652 0.068966 C00836 hsa04071
    Carbohydrate digestion and absorption 1.1557 0.068966 C00031 hsa04973
    Butanoate metabolism 0.8088 0.066176 C00042 hsa00650
    Valine,leucine and isoleucine biosynthesis 1.2902 0.064516 C00233 hsa00290
    African trypanosomiasis 1.6073 0.0625 C00078 hsa05143
    Vitamin digestion and absorption 2.2954 0.061224 C00120;C00153 hsa04977
    Valine,leucine and isoleucine degradation 0.8088 0.059289 C00233 hsa00280
    GABAergic synapse 2.1362 0.058824 C00042 hsa04727
    Pyrimidine metabolism 0.51133 0.057549 C00299 hsa00240
    Mineral absorption 2.8109 0.057143 C00031;C00078 hsa04978
    Pertussis 2.0375 0.055556 C00253 hsa05133
    Galactose metabolism 0.7426 0.055556 C00031 hsa00052
    Sphingolipid metabolism 1.2198 0.054795 C00836 hsa00600
    Taste transduction 2.6366 0.052632 C00031;C00547 hsa04742
    HIF-1 signaling pathway 1.6652 0.052632 C00031 hsa04066
    Salivary secretion 1.5533 0.052632 C00547 hsa04970
    注:-log(p):对P值的自然对数取负值。
    下载: 导出CSV
  • [1]

    中国心血管健康与疾病报告2020概要[J]. 中国循环杂志, 2021, 36(6): 521-545.

    [2]

    Zhao H, Liu YJ, Li Z, et al. Identification of essential hypertension biomarkers in human urine by non-targeted metabolomics based on UPLC-Q-TOF/MS[J]. Clinica Chimica Acta; International Journal of Clinical Chemistry, 2018, 486: 192-198. doi: 10.1016/j.cca.2018.08.006

    [3]

    Lu XY, Xu Ho, Zhao T, et al. Study of Serum metabonomics and formula-pattern correspondence in coronary heart disease patients diagnosed as phlegm or blood stasis pattern based on ultra performance liquid chromatography mass spectrometry[J]. Chinese Journal of Integrative Medicine, 2018, 24(12): 905-911. doi: 10.1007/s11655-018-2564-7

    [4]

    Liu YT, Xu WQ, Xiong YF, et al. Evaluations of the effect of Huang Qi against heart failure based on comprehensive echocardiography index and metabonomics[J]. Phytomedicine, 2018, 50: 205-212. doi: 10.1016/j.phymed.2018.04.027

    [5]

    中华医学会心血管病学分会. 急性ST段抬高型心肌梗死诊断和治疗指南[J]. 中华心血管病杂志, 2015, 43(5): 380-393. doi: 10.3760/cma.j.issn.0253-3758.2015.05.003

    [6]

    张新超, 于学忠, 陈凤英, 等. 急性冠脉综合征急诊快速诊治指南(2019)[J]. 临床急诊杂志, 2019, 20(4): 253-262. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZLC201904001.htm

    [7]

    Ussher JR, Elmariah S, Gerszten RE, et al. The emerging role of metabolomics in the diagnosis and prognosis of cardiovascular disease[J]. J Am Coll Cardiol, 2016, 68(25): 2850-2870. doi: 10.1016/j.jacc.2016.09.972

    [8]

    Wright KA, Suarez O, Fabian M, et al. Risk Factor control and cardiovascular event risk in people with type 2 diabetes in primary and secondary prevention settings[J]. Circulation, 2020, 142(20): 1925-1936. doi: 10.1161/CIRCULATIONAHA.120.046783

    [9]

    Arslan U, Yenerça M. Relationship between non-alcoholic fatty liver disease and coronary heart disease[J]. World J Clin Cases, 2020, 8(20): 4688-4699. doi: 10.12998/wjcc.v8.i20.4688

    [10]

    Stahl Eric P, Dhindsa Devinder S, Lee Suegene K, et al. Nonalcoholic fatty liver disease and the heart: JACC state-of-the-art review[J]. J Am Coll Cardiol, 2019, 73(8): 948-963. doi: 10.1016/j.jacc.2018.11.050

    [11]

    周士胜, 臧益民. B族维生素过量与心血管病风险[J]. 心脏杂志, 2012, 24(1): 110-113. https://www.cnki.com.cn/Article/CJFDTOTAL-XGNZ201201033.htm

    [12]

    Zhou SS, Zhou YM, Li D, et al. Dietary methyl-consuming compounds and metabolic syndrome[J]. Hypertens Res, 2011, 34(12): 1239-1245. doi: 10.1038/hr.2011.133

    [13]

    Li D, Sun WP, Zhou YM, et al. Chronic niacin overload may be involved in the increased prevalence of obesity in US children[J]. World J Gastroenterol, 2010, 16(19): 2378-2387. doi: 10.3748/wjg.v16.i19.2378

    [14]

    赵鹏, 王倩梅, 王彦军, 等. 2型糖尿病合并冠脉病变患者中急性心肌梗死的发生与血清Adropin蛋白水平的相关性研究[J]. 临床急诊杂志, 2019, 20(4): 268-271+277. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZLC201904003.htm

    [15]

    于杰滨, 邵明举. 冠心病合并2型糖尿病患者临床特点及生化指标[J]. 中国老年学杂志, 2021, 41(4): 689-691. doi: 10.3969/j.issn.1005-9202.2021.04.006

    [16]

    夏经钢, 尹春琳. 冠心病和糖尿病"共病"管理中的干预靶点—代谢性炎症的作用机制探讨[J]. 中国循环杂志, 2021, 36(1): 93-96. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGXH202101020.htm

    [17]

    谷世奎, 张梅, 黄体钢, 等. 糖尿病对急性心肌梗死患者预后的影响[J]. 中华急诊医学杂志, 2010, 20(3): 281-284. https://www.cnki.com.cn/Article/CJFDTOTAL-XIXG202202002.htm

    [18]

    李春光, 江新利, 马会杰, 等. 叉头蛋白FoxO亚群在心血管系统中的研究进展[J]. 中华心血管病杂志, 2014, 42(3): 262-265. doi: 10.3760/cma.j.issn.0253-3758.2014.03.019

    [19]

    王路乔, 黄波, 程晓曙. FoxO转录因子与心血管生物学效应[J]. 生命的化学, 2013, 33(4): 413-417. https://www.cnki.com.cn/Article/CJFDTOTAL-SMHX201304007.htm

    [20]

    帕丽达·阿布来提, 高颖. 血浆miR-223和Fox03a水平与冠心病及其传统危险因素之间的相关性研究[J]. 中国心血管病研究, 2021, 19(7): 661-666. doi: 10.3969/j.issn.1672-5301.2021.07.016

    [21]

    郑星星, 王建刚. FoxO3a转录因子与心血管疾病的研究进展[J]. 心脏杂志, 2014, 26(2): 222-224+232. https://www.cnki.com.cn/Article/CJFDTOTAL-XGNZ201402029.htm

    [22]

    Fasano C, Disciglio V, Bertora S, et al. FOXO3a from the Nucleus to the Mitochondria: A Round Trip in Cellular Stress Response[J]. Cells, 2019, 8(9): 1110-1138. doi: 10.3390/cells8091110

    [23]

    刘振华, 王珂, 王馨佩, 等. 转录因子FoxO1的修饰调节效应及在心血管疾病中的作用[J]. 心脏杂志, 2018, 30(2): 218-221. https://www.cnki.com.cn/Article/CJFDTOTAL-XGNZ201802024.htm

    [24]

    杜立娟, 孙敏, 谈钰濛, 等. 半夏泻心汤对过氧化氢叔丁醇诱导的MIN6细胞凋亡及PI3K/AKT/FOXO1信号通路的影响[J]. 中医杂志, 2020, 61(1): 63-67. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZYZ202001021.htm

    [25]

    李澜, 高慧, 邢晓雪, 等. 心肌自噬及其分子机制研究进展[J]. 中国临床药理学杂志, 2015, 31(24): 2479-2482. https://www.cnki.com.cn/Article/CJFDTOTAL-GLYZ201524035.htm

    [26]

    徐俊, 黄秀兰. SIRT1-FoxO-自噬通路研究进展[J]. 中国药理学通报, 2014, 30(7): 901-904. doi: 10.3969/j.issn.1001-1978.2014.07.004

    [27]

    Yamagishi S, Matsui T. Smooth muscle cell pathophysiology and advanced glycation end products(AGEs)[J]. Curr Drug Targets, 2010, 11(7): 875-881. doi: 10.2174/138945010791320827

    [28]

    Prasad K, Dhar I, Caspar-BG. Role of advanced glycation end products and its receptors in the pathogenesis of cigarette smoke-induced cardiovascular disease[J]. Int J Angiol, 2015, 24(2): 75-80.

    [29]

    Claudia LC, Armando CO, Maciste Habacuc MC, et al. Dietary advanced glycation end products and cardiometabolic risk[J]. Curr Diab Rep, 2017, 17(8): 63. doi: 10.1007/s11892-017-0891-2

    [30]

    Yamagishi S, Matsui T. Role of hyperglycemia-induced advanced glycation end product(AGE)accumulation in atherosclerosis[J]. Ann Vasc Dis, 2018, 11(3): 253-258. doi: 10.3400/avd.ra.18-00070

    [31]

    Fishman SL, Sonmez H, Basman C, et al. The role of advanced glycation end-products in the development of coronary artery disease in patients with and without diabetes mellitus: a review[J]. Mol Med, 2018, 24(1): 59. doi: 10.1186/s10020-018-0060-3

    [32]

    Kerkeni M, Weiss IS, Jaisson S, et al. Increased serum concentrations of pentosidine are related to presence and severity of coronary artery disease[J]. Thromb Res, 2014, 134(3): 633-638. doi: 10.1016/j.thromres.2014.07.008

  • 加载中

(7)

(3)

计量
  • 文章访问数:  1798
  • PDF下载数:  754
  • 施引文献:  0
出版历程
收稿日期:  2021-09-21
刊出日期:  2022-07-13

目录