肿瘤与心血管疾病关系的研究进展

亓晓涵, 王福, 孙慧, 等. 肿瘤与心血管疾病关系的研究进展[J]. 临床心血管病杂志, 2022, 38(7): 585-592. doi: 10.13201/j.issn.1001-1439.2022.07.014
引用本文: 亓晓涵, 王福, 孙慧, 等. 肿瘤与心血管疾病关系的研究进展[J]. 临床心血管病杂志, 2022, 38(7): 585-592. doi: 10.13201/j.issn.1001-1439.2022.07.014
QI Xiaohan, WANG Fu, SUN Hui, et al. Progress on the relationship between tumors and cardiovascular diseases[J]. J Clin Cardiol, 2022, 38(7): 585-592. doi: 10.13201/j.issn.1001-1439.2022.07.014
Citation: QI Xiaohan, WANG Fu, SUN Hui, et al. Progress on the relationship between tumors and cardiovascular diseases[J]. J Clin Cardiol, 2022, 38(7): 585-592. doi: 10.13201/j.issn.1001-1439.2022.07.014

肿瘤与心血管疾病关系的研究进展

  • 基金项目:
    国家重大新药创制科技重大专项(No: 2020ZX09201025);山东省医药卫生科技发展计划项目(No: 202003011255)
详细信息

Progress on the relationship between tumors and cardiovascular diseases

More Information
  • 心血管疾病和肿瘤是当前世界范围内威胁人类生命健康的主要原因。越来越多的证据表明,心血管疾病与肿瘤之间存在着双向关系。我们已知肿瘤的治疗会导致多种心血管疾病,心血管疾病是肿瘤幸存者死亡的主要原因。最近的研究显示,患有心血管疾病的患者,如心肌梗死、心力衰竭、心房颤动、高血压等患者,肿瘤的发病率也较普通人明显升高。本文将对二者之间关系的最新研究进展及其相关的作用机制做一综述,并探讨其对于临床的意义。
  • 加载中
  • [1]

    Khan MA, Hashim MJ, Mustafa H, et al. Global epidemiology of ischemic heart disease: results from the global burden of disease study[J]. Cureus, 2020, 12(7): e9349.

    [2]

    Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. doi: 10.3322/caac.21492

    [3]

    Totzeck M, Schuler M, Stuschke M, et al. Cardio-oncology-strategies for management of cancer-therapy related cardiovascular disease[J]. Int J Cardiol, 2019, 280: 163-175. doi: 10.1016/j.ijcard.2019.01.038

    [4]

    Weaver KE, Foraker RE, Alfano CM, et al. Cardiovascular risk factors among long-term survivors of breast, prostate, colorectal, and gynecologic cancers: a gap in survivorship care?[J]. J Cancer Surviv, 2013, 7(2): 253-261. doi: 10.1007/s11764-013-0267-9

    [5]

    Ramin C, Schaeffer ML, Zheng Z, et al. All-Cause and cardiovascular disease mortality among breast cancer survivors in CLUE Ⅱ, a Long-Standing Community-Based cohort[J]. J Natl Cancer Inst, 2021, 113(2): 137-145. doi: 10.1093/jnci/djaa096

    [6]

    Wang L, Wang F, Chen L, et al. Long-term cardiovascular disease mortality among 160 834 5-year survivors of adolescent and young adult cancer: an American population-based cohort study[J]. Eur Heart J, 2021, 42(1): 101-109.

    [7]

    Mcgowan JV, Chung R, Maulik A, et al. Anthracycline chemotherapy and cardiotoxicity[J]. Cardiovasc Drugs Ther, 2017, 31(1): 63-75. doi: 10.1007/s10557-016-6711-0

    [8]

    Cappetta D, Rossi F, Piegari E, et al. Doxorubicin targets multiple players: A new view of an old problem[J]. Pharmacol Res, 2018, 127: 4-14. doi: 10.1016/j.phrs.2017.03.016

    [9]

    Abdelgawad IY, Sadak KT, Lone DW, et al. Molecular mechanisms and cardiovascular implications of cancer therapy-induced senescence[J]. Pharmacol Ther, 2021, 221: 107751. doi: 10.1016/j.pharmthera.2020.107751

    [10]

    Renu K, Abilash VG, Tirupathi Pichiah PB, et al. Molecular mechanism of doxorubicin-induced cardiomyopathy-an update[J]. Eur J Pharmacol, 2018, 818: 241-253. doi: 10.1016/j.ejphar.2017.10.043

    [11]

    Rochette L, Guenancia C, Gudjoncik A, et al. Anthracyclines/trastuzumab: New aspects of cardiotoxicity and molecular mechanisms[J]. Trends Pharmacol Sci, 2015, 36(6): 326-348. doi: 10.1016/j.tips.2015.03.005

    [12]

    Zhang S, Liu X, Bawa-Khalfe T, et al. Identification of the molecular basis of doxorubicin-induced cardiotoxicity[J]. Nat Med, 2012, 18(11): 1639-1642. doi: 10.1038/nm.2919

    [13]

    Tadokoro T, Ikeda M, Ide T, et al. Mitochondria-dependent ferroptosis plays a pivotal role in doxorubicin cardiotoxicity[J]. JCI Insight, 2020, 5(9): 100.

    [14]

    Zhao L, Qi Y, Xu L, et al. MicroRNA-140-5p aggravates doxorubicin-induced cardiotoxicity by promoting myocardial oxidative stress via targeting Nrf2 and Sirt2[J]. Redox Biol, 2018, 15: 284-296. doi: 10.1016/j.redox.2017.12.013

    [15]

    Zhang X, Hu C, Kong CY, et al. FNDC5 alleviates oxidative stress and cardiomyocyte apoptosis in doxorubicin-induced cardiotoxicity via activating AKT[J]. Cell Death Differ, 2020, 27(2): 540-555. doi: 10.1038/s41418-019-0372-z

    [16]

    Wenningmann N, Knapp M, Ande A, et al. Insights into doxorubicin-induced cardiotoxicity: Molecularmechanisms, preventive strategies, and early monitoring[J]. Mol Pharmacol, 2019, 96(2): 219-232. doi: 10.1124/mol.119.115725

    [17]

    Pecoraro M, Del Pizzo M, Marzocco S, et al. Inflammatory mediators in a short-time mouse model of doxorubicin-induced cardiotoxicity[J]. Toxicol Appl Pharmacol, 2016, 293: 44-52. doi: 10.1016/j.taap.2016.01.006

    [18]

    Herrmann J, Lerman A, Sandhu N P, et al. Evaluation and management of patients with heart disease and cancer: Cardio-oncology[J]. Mayo Clin Proc, 2014, 89(9): 1287-1306. doi: 10.1016/j.mayocp.2014.05.013

    [19]

    Herrmann J. Adverse cardiac effects of cancer therapies: cardiotoxicity and arrhythmia[J]. Nat Rev Cardiol, 2020, 17(8): 474-502. doi: 10.1038/s41569-020-0348-1

    [20]

    Iqubal A, Iqubal M K, Sharma S, et al. Molecular mechanism involved in cyclophosphamide-induced cardiotoxicity: Old drug with a new vision[J]. Life Sci, 2019, 218: 112-131. doi: 10.1016/j.lfs.2018.12.018

    [21]

    Dionísio F, Araújo AM, Duarte-Araújo M, et al. Cardiotoxicity of cyclophosphamide's metabolites: an in vitro metabolomics approach in AC16 human cardiomyocytes[J]. Arch Toxicol, 2022, 96(2): 653-671. doi: 10.1007/s00204-021-03204-y

    [22]

    Bayrak S, Aktaş S, Altun Z, et al. Antioxidant effect of acetyl-l-carnitine against cisplatin-induced cardiotoxicity[J]. J Int Med Res, 2020, 48(8): 300060520951393.

    [23]

    Qian P, Yan L J, Li Y Q, et al. Cyanidin ameliorates cisplatin-induced cardiotoxicity via inhibition of ROS-mediated apoptosis[J]. Exp Ther Med, 2018, 15(2): 1959-1965.

    [24]

    Madeddu C, Deidda M, Piras A, et al. Pathophysiology of cardiotoxicity induced by nonanthracycline chemotherapy[J]. J Cardiovasc Med(Hagerstown), 2016, 17 Suppl 1: S12-S18.

    [25]

    Jain D, Russell R, Schwartz RG, et al. Cardiac complications of cancer therapy: pathophysiology, identification, prevention, treatment, and future directions[J]. Curr Cardiol Rep, 2017, 19(5): 36. doi: 10.1007/s11886-017-0846-x

    [26]

    Batra A, Patel B, Addison D, et al. Cardiovascular safety profile of taxanes and vinca alkaloids: 30 years FDA registry experience[J]. Open Heart, 2021, 8(2): 100.

    [27]

    More L A, Lane S, Asnani A. 5-FU cardiotoxicity: Vasospasm, myocarditis, and sudden death[J]. Curr Cardiol Rep, 2021, 23(3): 17. doi: 10.1007/s11886-021-01441-2

    [28]

    Shiga T, Hiraide M. Cardiotoxicities of 5-fluorouracil and other fluoropyrimidines[J]. Curr Treat Options Oncol, 2020, 21(4): 27. doi: 10.1007/s11864-020-0719-1

    [29]

    Lancellotti P, Nkomo VT, Badano LP, et al. Expert consensus for multi-modality imaging evaluation of cardiovascular complications of radiotherapy in adults: a report from the European Association of Cardiovascular Imaging and the American Society of Echocardiography[J]. Eur Heart J Cardiovasc Imaging, 2013, 14(8): 721-740. doi: 10.1093/ehjci/jet123

    [30]

    Cuomo JR, Javaheri SP, Sharma GK, et al. How to prevent and manage radiation-induced coronary artery disease[J]. Heart, 2018, 104(20): 1647-1653. doi: 10.1136/heartjnl-2017-312123

    [31]

    Kim L, Loccoh EC, Sanchez R, et al. Contemporary understandings of cardiovascular disease after cancer radiotherapy: a focus on ischemic heart disease[J]. Curr Cardiol Rep, 2020, 22(11): 151. doi: 10.1007/s11886-020-01380-4

    [32]

    Ramadan R, Baatout S, Aerts A, et al. The role of connexin proteins and their channels in radiation-induced atherosclerosis[J]. Cell Mol Life Sci, 2021, 78(7): 3087-3103. doi: 10.1007/s00018-020-03716-3

    [33]

    McGale P, Darby SC, Hall P, et al. Incidence of heart disease in 35, 000 women treated with radiotherapy for breast cancer in Denmark and Sweden[J]. Radiother Oncol, 2011, 100(2): 167-175. doi: 10.1016/j.radonc.2011.06.016

    [34]

    Hamood R, Hamood H, Merhasin I, et al. Risk of cardiovascular disease after radiotherapy in survivors of breast cancer: A case-cohort study[J]. J Cardiol, 2019, 73(4): 280-291. doi: 10.1016/j.jjcc.2018.10.009

    [35]

    Desai M Y, Windecker S, Lancellotti P, et al. Prevention, diagnosis, and management of Radiation-Associated cardiac disease: JACC scientific expert panel[J]. J Am Coll Cardiol, 2019, 74(7): 905-927. doi: 10.1016/j.jacc.2019.07.006

    [36]

    Kirova Y, Tallet A, Aznar MC, et al. Radio-induced cardiotoxicity: From physiopathology and risk factors to adaptation of radiotherapy treatment planning and recommended cardiac follow-up[J]. Cancer Radiother, 2020, 24(6-7): 576-585. doi: 10.1016/j.canrad.2020.07.001

    [37]

    Sestier M, Hillis C, Fraser G, et al. Bruton's tyrosine kinase inhibitors and cardiotoxicity: more than just atrial fibrillation[J]. Curr Oncol Rep, 2021, 23(10): 113. doi: 10.1007/s11912-021-01102-1

    [38]

    Fradley MG, Gliksman M, Emole J, et al. Rates and risk of atrial arrhythmias in patients treated with ibrutinib compared with cytotoxic chemotherapy[J]. Am J Cardiol, 2019, 124(4): 539-544. doi: 10.1016/j.amjcard.2019.05.029

    [39]

    Jiang L, Li L, Ruan Y, et al. Ibrutinib promotes atrial fibrillation by inducing structural remodeling and calcium dysregulation in the atrium[J]. Heart Rhythm, 2019, 16(9): 1374-1382. doi: 10.1016/j.hrthm.2019.04.008

    [40]

    McMullen JR, Boey EJ, Ooi JY, et al. Ibrutinib increases the risk of atrial fibrillation, potentially through inhibition of cardiac PI3K-Akt signaling[J]. Blood, 2014, 124(25): 3829-3830. doi: 10.1182/blood-2014-10-604272

    [41]

    Fradley MG, Welter-Frost A, Gliksman M, et al. Electrocardiographic changes associated with ibrutinib exposure[J]. Cancer Control, 2020, 27(1): 1148367072.

    [42]

    Lee DH, Hawk F, Seok K, et al. Association between ibrutinib treatment and hypertension[J]. Heart, 2022, 108(6): 445-450. doi: 10.1136/heartjnl-2021-319110

    [43]

    Bagchi S, Yuan R, Engleman EG. Immune checkpoint inhibitors for the treatment of cancer: Clinical impact and mechanisms of response and resistance[J]. Annu Rev Pathol, 2021, 16: 223-249. doi: 10.1146/annurev-pathol-042020-042741

    [44]

    Tarrio ML, Grabie N, Bu DX, et al. PD-1 protects against inflammation and myocyte damage in T cell-mediated myocarditis[J]. J Immunol, 2012, 188(10): 4876-4884. doi: 10.4049/jimmunol.1200389

    [45]

    Gröschel C, Sasse A, Röhrborn C, et al. T helper cells with specificity for an antigen in cardiomyocytes promote pressure overload-induced progression from hypertrophy to heart failure[J]. Sci Rep, 2017, 7(1): 15998. doi: 10.1038/s41598-017-16147-1

    [46]

    Michel L, Rassaf T, Totzeck M. Cardiotoxicity from immune checkpoint inhibitors[J]. Int J Cardiol Heart Vasc, 2019, 25: 100420.

    [47]

    Lyon AR, Yousaf N, Battisti N, et al. Immune checkpoint inhibitors and cardiovascular toxicity[J]. Lancet Oncol, 2018, 19(9): e447-e458. doi: 10.1016/S1470-2045(18)30457-1

    [48]

    Masoudkabir F, Sarrafzadegan N, Gotay C, et al. Cardiovasculardisease and cancer: evidence for shared disease pathways and pharmacologic prevention[J]. Atherosclerosis, 2017, 263: 343-351. doi: 10.1016/j.atherosclerosis.2017.06.001

    [49]

    Jaiswal S, Natarajan P, Silver AJ, et al. Clonal Hematopoiesis and Risk of Atherosclerotic Cardiovascular Disease[J]. N Engl J Med, 2017, 377(2): 111-121. doi: 10.1056/NEJMoa1701719

    [50]

    Koene RJ, Prizment AE, Blaes A, et al. Shared risk factors in cardiovascular disease and cancer[J]. Circulation, 2016, 133(11): 1104-1114. doi: 10.1161/CIRCULATIONAHA.115.020406

    [51]

    de Haas EC, Oosting SF, Lefrandt JD, et al. The metabolic syndrome in cancer survivors[J]. Lancet Oncol, 2010, 11(2): 193-203. doi: 10.1016/S1470-2045(09)70287-6

    [52]

    Liu J, Chen H, Xie X, et al. Lung tumor presenting with acute myocardial infarction and lower extremity arterial embolism[J]. BMC Cardiovasc Disord, 2020, 20(1): 482. doi: 10.1186/s12872-020-01770-0

    [53]

    Kushiyama S, Ikura Y, Iwai Y. Acute myocardial infarction caused by coronary tumour embolism[J]. Eur Heart J, 2013, 34(48): 3690. doi: 10.1093/eurheartj/eht413

    [54]

    Wohlfahrt P, Bruthans J, Kraj oviechová A, et al. Systematic Coronary Risk Evaluation(SCORE)and 20-year risk of cardiovascular mortality and cancer[J]. Eur J Intern Med, 2020, 79: 63-69. doi: 10.1016/j.ejim.2020.05.034

    [55]

    Malmborg M, Christiansen CB, Schmiegelow MD, et al. Incidence of new onset cancer in patients with a myocardial infarction-a nationwide cohort study[J]. BMC Cardiovasc Disord, 2018, 18(1): 198. doi: 10.1186/s12872-018-0932-z

    [56]

    Rinde LB, Småbrekke B, Hald EM, et al. Myocardial infarction and future risk of cancer in the general population-the Tromsø Study[J]. Eur J Epidemiol, 2017, 32(3): 193-201. doi: 10.1007/s10654-017-0231-5

    [57]

    Koelwyn GJ, Newman A, Afonso MS, et al. Myocardial infarction accelerates breast cancer via innate immune reprogramming[J]. Nat Med, 2020, 26(9): 1452-1458. doi: 10.1038/s41591-020-0964-7

    [58]

    Hasin T, Gerber Y, McNallan SM, et al. Patients with heart failure have an increased risk of incident cancer[J]. J Am Coll Cardiol, 2013, 62(10): 881-886. doi: 10.1016/j.jacc.2013.04.088

    [59]

    Banke A, Schou M, Videbaek L, et al. Incidence of cancer in patients with chronic heart failure: a long-term follow-up study[J]. Eur J Heart Fail, 2016, 18(3): 260-266. doi: 10.1002/ejhf.472

    [60]

    Hasin T, Gerber Y, Weston S A, et al. Heart failure after myocardial infarction is associated with increased risk of cancer[J]. J Am Coll Cardiol, 2016, 68(3): 265-271. doi: 10.1016/j.jacc.2016.04.053

    [61]

    Moliner P, Lupón J, de Antonio M, et al. Trends in modes of death in heart failure over the last two decades: less sudden death but cancer deaths on the rise[J]. Eur J Heart Fail, 2019, 21(10): 1259-1266. doi: 10.1002/ejhf.1569

    [62]

    Casparie M, Tiebosch A T, Burger G, et al. Pathology databanking and biobanking in The Netherlands, a central role for PALGA, the nationwide histopathology and cytopathology data network and archive[J]. Cell Oncol, 2007, 29(1): 19-24.

    [63]

    Sakamoto M, Hasegawa T, Asakura M, et al. Does the pathophysiology of heart failure prime the incidence of cancer?[J]. Hypertens Res, 2017, 40(9): 831-836. doi: 10.1038/hr.2017.45

    [64]

    Bertero E, Ameri P, Maack C. Bidirectional relationship between cancer and heart failure: Oldandnewissues in cardio-oncology[J]. Card Fail Rev, 2019, 5(2): 106-111. doi: 10.15420/cfr.2019.1.2

    [65]

    Bertero E, Canepa M, Maack C, et al. Linking heart failure to cancer: Background evidence and research perspectives[J]. Circulation, 2018, 138(7): 735-742. doi: 10.1161/CIRCULATIONAHA.118.033603

    [66]

    Galdiero M R, Garlanda C, Jaillon S, et al. Tumor associated macrophages and neutrophils in tumor progression[J]. J Cell Physiol, 2013, 228(7): 1404-1412. doi: 10.1002/jcp.24260

    [67]

    Armaiz-Pena GN, Gonzalez-Villasana V, Nagaraja AS, et al. Adrenergic regulation of monocyte chemotactic protein 1 leads to enhanced macrophage recruitment and ovarian carcinoma growth[J]. Oncotarget, 2015, 6(6): 4266-4273. doi: 10.18632/oncotarget.2887

    [68]

    George AJ, Thomas WG, Hannan RD. The renin-angiotensin system and cancer: old dog, new tricks[J]. Nat Rev Cancer, 2010, 10(11): 745-759. doi: 10.1038/nrc2945

    [69]

    Suthahar N, Meijers WC, Silljé H, et al. From inflammation to Fibrosis-Molecular and cellular mechanisms of myocardial tissue remodelling and perspectives on differential treatment opportunities[J]. Curr Heart Fail Rep, 2017, 14(4): 235-250. doi: 10.1007/s11897-017-0343-y

    [70]

    Meijers WC, Maglione M, Bakker S, et al. Heart failure stimulates tumor growth by circulating factors[J]. Circulation, 2018, 138(7): 678-691. doi: 10.1161/CIRCULATIONAHA.117.030816

    [71]

    Zhang M, Li L, Zhao Q, et al. The association of New-Onset atrial fibrillation and risk of cancer: a systematic review and meta-analysis[J]. Cardiol Res Pract, 2020, 2020: 1-8.

    [72]

    Biggar R J, Wohlfahrt J, Oudin A, et al. Digoxin use and the risk of breast cancer in women[J]. J Clin Oncol, 2011, 29(16): 2165-2170. doi: 10.1200/JCO.2010.32.8146

    [73]

    Siemers L A, Macgillivray J, Andrade J G, et al. Chronic amiodarone use and the risk of cancer: A systematic review and meta-analysis[J]. CJC Open, 2021, 3(1): 109-114. doi: 10.1016/j.cjco.2020.09.013

    [74]

    Raposeiras Roubín S, Abu Assi E, Barreiro Pardal C, et al. New cancer diagnosis after bleeding in anticoagulated patients with atrial fibrillation[J]. J Am Heart Assoc, 2020, 9(22): e016836. doi: 10.1161/JAHA.120.016836

    [75]

    Abrahami D, Renoux C, Yin H, et al. The association between oral anticoagulants and cancer incidence among individuals with nonvalvular atrial fibrillation[J]. Thromb Haemost, 2020, 120(10): 1384-1394. doi: 10.1055/s-0040-1714213

    [76]

    Lee SH, Lee HA, Lee SS, et al. Clinical impact of pre-hypertension on the risk of cancer in male and female subjects[J]. Sci Rep, 2020, 10(1): 9974. doi: 10.1038/s41598-020-66653-y

    [77]

    Tadic M, Cuspidi C, Belyavskiy E, et al. Intriguing relationship between antihypertensive therapy and cancer[J]. Pharmacol Res, 2019, 141: 501-511. doi: 10.1016/j.phrs.2019.01.037

    [78]

    Kim CS, Han KD, Choi HS, et al. Association of hypertension and blood pressure with kidney cancer risk: a nationwide population-based cohort study[J]. Hypertension, 2020, 75(6): 1439-1446. doi: 10.1161/HYPERTENSIONAHA.120.14820

    [79]

    Kok VC, Zhang HW, Lin CT, et al. Positive association between hypertension and urinary bladder cancer: epidemiologic evidence involving 79, 236 propensity score-matched individuals[J]. Ups J Med Sci, 2018, 123(2): 109-115. doi: 10.1080/03009734.2018.1473534

    [80]

    Seo JH, Kim YD, Park CS, et al. Hypertension is associated with oral, laryngeal, and esophageal cancer: a nationwide population-based study[J]. Sci Rep, 2020, 10(1): 10291. doi: 10.1038/s41598-020-67329-3

    [81]

    Han H, Guo W, Shi W, et al. Hypertension and breast cancer risk: a systematic review and meta-analysis[J]. Sci Rep, 2017, 7: 44877. doi: 10.1038/srep44877

    [82]

    Folkerd E, Dowsett M. Sex hormones and breast cancer risk and prognosis[J]. Breast, 2013, 22 Suppl 2: S38-43.

    [83]

    陈雨卉, 王运松, 夏云龙. 恶性肿瘤相关性心房颤动的研究现状[J]. 临床心血管病杂志, 2021, 37(2): 177-181. https://www.cnki.com.cn/Article/CJFDTOTAL-LCXB202102018.htm

    [84]

    黄磊, 解玉泉. 免疫检查点抑制剂相关性心肌炎的研究进展[J]. 临床心血管病杂志, 2020, 36(5): 410-414. https://www.cnki.com.cn/Article/CJFDTOTAL-LCXB202005004.htm

    [85]

    董斐斐, 傅维佳, 秦永文, 等. 嵌合抗原受体T细胞治疗的心血管毒性[J]. 临床心血管病杂志, 2020, 36(1): 83-85. https://www.cnki.com.cn/Article/CJFDTOTAL-LCXB202001019.htm

    [86]

    何虹燕, 李骁, 李真, 等. 《2019美国心脏协会肿瘤心脏病患者心脏康复治疗声明》解读[J]. 中国循环杂志, 2020, 35(10): 1036-1040. doi: 10.3969/j.issn.1000-3614.2020.10.019

  • 加载中
计量
  • 文章访问数:  2034
  • PDF下载数:  902
  • 施引文献:  0
出版历程
收稿日期:  2021-10-28
刊出日期:  2022-07-13

目录