磷脂及鞘磷脂在冠状动脉支架内再狭窄中的研究

苗旭光, 崔松, 柳景华, 等. 磷脂及鞘磷脂在冠状动脉支架内再狭窄中的研究[J]. 临床心血管病杂志, 2023, 39(1): 29-33. doi: 10.13201/j.issn.1001-1439.2023.01.006
引用本文: 苗旭光, 崔松, 柳景华, 等. 磷脂及鞘磷脂在冠状动脉支架内再狭窄中的研究[J]. 临床心血管病杂志, 2023, 39(1): 29-33. doi: 10.13201/j.issn.1001-1439.2023.01.006
MIAO Xuguang, CUI Song, LIU Jinghua, et al. Study on phospholipids and sphingomyelin in coronary artery stent restenosis[J]. J Clin Cardiol, 2023, 39(1): 29-33. doi: 10.13201/j.issn.1001-1439.2023.01.006
Citation: MIAO Xuguang, CUI Song, LIU Jinghua, et al. Study on phospholipids and sphingomyelin in coronary artery stent restenosis[J]. J Clin Cardiol, 2023, 39(1): 29-33. doi: 10.13201/j.issn.1001-1439.2023.01.006

磷脂及鞘磷脂在冠状动脉支架内再狭窄中的研究

详细信息

Study on phospholipids and sphingomyelin in coronary artery stent restenosis

More Information
  • 目的 探究冠心病患者经皮冠状动脉介入治疗(PCI)后支架内再狭窄(ISR)的危险因素,以及磷脂和鞘磷脂代谢差异与ISR的关系。方法 纳入2017年1月—2020年12月在北京安贞医院进行首次PCI手术的冠心病患者共412例,根据PCI术后1年是否发生ISR分为ISR组(35例)和非ISR组(377例)。运用液相色谱串联质谱(LC-MS/MS)技术分析比对两组患者血液样本的代谢产物差异。采用多因素logistic回归分析筛选冠心病患者PCI后ISR的危险因素。结果 非ISR组与ISR组在高密度脂蛋白胆固醇(HDL-C)、血管病变数量、病变长度、支架内径、支架长度、后扩直径方面均差异有统计学意义(均P < 0.05)。多因素logistic回归分析及代谢组学分析结果显示,非ISR组与ISR组患者血液代谢产物存在显著差异,主要为磷脂及鞘磷脂类代谢物的差异(均P < 0.05)。结论 HDL-C、病变长度、支架内径及支架长度为冠心病患者PCI后ISR的影响因素,同时磷脂及鞘磷脂类代谢物在预测ISR的发生方面可能发挥着重要作用。
  • 加载中
  • 图 1  ISR组和非ISR组血液代谢产物的PLS-DA分析结果

    Figure 1.  Blood metabolites in non-ISR group and ISR group showed by PLS-DA analysis

    图 2  VIP分析显示的ISR组和非ISR组具有显著差异的代谢产物

    Figure 2.  Significantly different metabolites between non-ISR group and ISR group showed by VIP analysis

    表 1  非ISR组与ISR组基础资料比较

    Table 1.  Comparison of baseline data between non-ISR group and ISR group  例(%), X±S

    项目 非ISR组(377例) ISR组(35例) P
    男/女/例 287/90 24/11 0.320
    年龄/岁 57.46±9.38 59.29±7.48 0.265
    体重指数/(kg·m-2) 25.84±3.28 26.59±3.46 0.197
    高血压 121(32.10) 7(20.00) 0.139
    糖尿病 117(31.03) 13(37.14) 0.457
    吸烟史 205(54.38) 18(51.43) 0.738
    饮酒史 128(33.95) 14(40.00) 0.471
    HDL-C/(mmol·L-1) 1.26±0.25 1.17±0.28 0.035
    LDL-C/(mmol·L-1) 2.48±0.66 2.65±0.58 0.128
    TG/(mmol·L-1) 1.22±0.71 1.40±0.67 0.147
    hs-CRP/(mg·L-1) 1.11±1.19 1.35±0.96 0.256
    CREA/(μmol·L-1) 70.81±15.13 67.39±14.06 0.200
    HbA1c/% 6.40±1.21 6.63±1.54 0.313
    WBC/(×109·L-1) 6.96±1.89 6.98±1.56 0.967
    RBC/(×1012·L-1) 4.76±0.46 4.66±0.48 0.212
    病变情况 0.024
      单支病变 98(25.99) 5(14.29)
      双支病变 141(37.40) 9(25.71)
      多支病变 138(36.60) 21(60.00)
    病变长度/mm 12.00±5.30 14.81±6.56 0.003
    支架数目/个 1.40±0.69 1.49±0.61 0.478
    支架内径/mm 2.99±0.46 2.75±0.35 0.002
    支架长度/mm 15.38±8.32 18.51±8.20 0.034
    预扩直径/mm 2.54±0.41 2.43±0.31 0.127
    后扩直径/mm 3.19±0.49 3.02±0.43 0.045
    下载: 导出CSV

    表 2  ISR组和非ISR组差异性代谢产物

    Table 2.  Differential metabolites in ISR and non-ISR patients

    差异代谢物 VIP P 变化趋势
    PC(36:0) 1.789 0.016 升高
    PE(36:2) 1.742 0.021 下降
    PG(34:1) 1.729 0.047 下降
    PC(16:0/18:2) 1.720 0.027 升高
    PE(32:1) 1.711 0.028 下降
    PI(36:4) 1.707 0.032 下降
    PI(34:1) 1.674 0.019 下降
    SM(d18:1/20:2) 1.653 0.025 下降
    下载: 导出CSV

    表 3  ISR危险因素的logistic分析

    Table 3.  Logistic analysis of risk factors for ISR

    危险因素 OR 95%CI P
    PC(36:0) 2.94 2.41~3.22 < 0.001
    PC(16:0/18:2) 1.28 1.17~1.65 0.010
    PE(36:2) 0.42 0.38~0.59 < 0.001
    PI(36:4) 0.51 0.34~0.68 0.017
    SM(d18:1/20:2) 0.72 0.58~0.82 0.038
    下载: 导出CSV
  • [1]

    Niccoli G, Montone RA, Lanza GA, et al. Angina after percutaneous coronary intervention: The need for precision medicine[J]. Int J Cardiol, 2017, 248: 14-19. doi: 10.1016/j.ijcard.2017.07.105

    [2]

    Li M, Hou J, Gu X, et al. Incidence and risk factors of in-stent restenosis after percutaneous coronary intervention in patients from southern China[J]. Eur J Med Res, 2022, 27(1): 12. doi: 10.1186/s40001-022-00640-z

    [3]

    Moussa ID, Mohananey D, Saucedo J, et al. Trends and outcomes of restenosis after coronary stent implantation in the united states[J]. J Am Coll Cardiol, 2020, 76(13): 1521-1531. doi: 10.1016/j.jacc.2020.08.002

    [4]

    Giacoppo D, Alfonso F, Xu B, et al. Drug-coated balloon angioplasty versus drug-eluting stent implantation in patients with coronary stent restenosis[J]. J Am Coll Cardiol, 2020, 75(21): 2664-2678. doi: 10.1016/j.jacc.2020.04.006

    [5]

    Fiehn O. Metabolomics by gas chromatography-mass spectrometry: combined targeted and untargeted profiling[J]. Curr Protoc Mol Biol, 2016, 114: 3041-3043.

    [6]

    段雯婷, 路轶晴, 马欣, 等. QRS碎裂波结合血浆差异代谢物在急性心肌梗死预后中的应用[J]. 临床心血管病杂志, 2021, 37(4): 322-327. doi: 10.13201/j.issn.1001-1439.2021.04.007

    [7]

    Neumann FJ, Sousa-Uva M, Ahlsson A, et al. 2018 ESC/EACTS Guidelines on myocardial revascularization[J]. Eur Heart J, 2019, 40(2): 87-165. doi: 10.1093/eurheartj/ehy394

    [8]

    Pleva L, Kukla P, Hlinomaz O. Treatment of coronary in-stent restenosis: a systematic review[J]. J Geriatr Cardiol, 2018, 15(2): 173-184.

    [9]

    Aoki J, Tanabe K. Mechanisms of drug-eluting stent restenosis[J]. Cardiovasc Interv Ther, 2021, 36(1): 23-29. doi: 10.1007/s12928-020-00734-7

    [10]

    Wang D, Uhrin P, Mocan A, et al. Vascular smooth muscle cell proliferation as a therapeutic target. Part 1: molecular targets and pathways[J]. Biotechnol Adv, 2018, 36(6): 1586-1607. doi: 10.1016/j.biotechadv.2018.04.006

    [11]

    Boden WE. High-density lipoprotein cholesterol as an independent risk factor in cardiovascular disease: assessing the data from Framingham to the Veterans Affairs High--Density Lipoprotein Intervention Trial[J]. Am J Cardiol, 2000, 86(12A): 19 L-22 L.

    [12]

    Triolo M, Annema W, Dullaart RP, et al. Assessing the functional properties of high-density lipoproteins: an emerging concept in cardiovascular research[J]. Biomark Med, 2013, 7(3): 457-472. doi: 10.2217/bmm.13.35

    [13]

    李风祥, 单迎光, 郜旌红, 等. TG/HDL-C比值与冠状动脉微循环疾病的相关性研究[J]. 临床心血管病杂志, 2021, 37(11): 1036-1039. doi: 10.13201/j.issn.1001-1439.2021.11.013

    [14]

    Kansara PW, Qureshi C, Jurkovit Z, et al. Definite Stent Thrombosis: Does High Density Lipoprotein Cholesterol Level Matter?[J]. JACC, 2015, 65(10): 110. doi: 10.1016/S0735-1097(15)60110-3

    [15]

    Zanoni P, Khetarpal SA, Larach DB, et al. Rare variant in scavenger receptor BI raises HDL cholesterol and increases risk of coronary heart disease[J]. Science, 2016, 351(6278): 1166-1171. doi: 10.1126/science.aad3517

    [16]

    Zhang L, Wang Y, Zhang Z, et al. Risk factors of in-stent restenosis among coronary artery disease patients with syphilis undergoing percutaneous coronary intervention: a retrospective study[J]. BMC Cardiovasc Disord, 2021, 21(1): 438. doi: 10.1186/s12872-021-02245-6

    [17]

    Cheng G, Chang FJ, Wang Y, et al. Factors influencing stent restenosis after percutaneous coronary intervention in patients with coronary heart disease: a clinical trial based on 1-year follow-up[J]. Med Sci Monit, 2019, 25: 240-247. doi: 10.12659/MSM.908692

    [18]

    曾秋棠, 程翔, 彭昱东. 冠状动脉功能学和腔内影像学评价进展[J]. 临床心血管病杂志, 2021, 37(5): 398-401. https://www.cnki.com.cn/Article/CJFDTOTAL-LCXB202105002.htm

    [19]

    Cai F, Ren F, Zhang Y, et al. Screening of lipid metabolism biomarkers in patients with coronary heart disease via ultra-performance liquid chromatography-high resolution mass spectrometry[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2021, 1169: 122603. doi: 10.1016/j.jchromb.2021.122603

    [20]

    Meeusen JW, Donato LJ, Bryant SC, et al. Plasma Ceramides[J]. Arterioscler Thromb Vasc Biol, 2018, 38(8): 1933-1939. doi: 10.1161/ATVBAHA.118.311199

    [21]

    Wang DE, Toledo A, Hrub Y, et al. Plasma Ceramides, Mediterranean Diet, and Incident Cardiovascular Disease in the PREDIMED Trial(Prevención con Dieta Mediterránea)[J]. Circulation, 2017, 135(21): 2028-2040. doi: 10.1161/CIRCULATIONAHA.116.024261

    [22]

    Gomez-Muñoz A, Presa N, Gomez-Larrauri A, et al. Control of inflammatory responses by ceramide, sphingosine 1-phosphate and ceramide 1-phosphate[J]. Prog Lipid Res, 2016, 61: 51-62. doi: 10.1016/j.plipres.2015.09.002

    [23]

    Wang Z, Liu C, Fang H. Blood cell parameters and predicting coronary in-stent restenosis[J]. Angiology, 2019, 70(8): 711-718. doi: 10.1177/0003319719830495

    [24]

    Niaudet C, Bonnaud S, Guillonneau M, et al. Plasma membrane reorganization links acid sphingomyelinase/ceramide to p38 MAPK pathways in endothelial cells apoptosis[J]. Cell Signal, 2017, 33: 10-21. doi: 10.1016/j.cellsig.2017.02.001

    [25]

    Paynter NP, Balasubramanian R, Giulianini F, et al. Metabolic Predictors of Incident Coronary Heart Disease in Women[J]. Circulation, 2018, 137(8): 841-853. doi: 10.1161/CIRCULATIONAHA.117.029468

    [26]

    Campos-Mota GP, Navia-Pelaez JM, Araujo-Souza JC, et al. Role of ERK1/2 activation and nNOS uncoupling on endothelial dysfunction induced by lysophosphatidylcholine[J]. Atherosclerosis, 2017, 258: 108-118. doi: 10.1016/j.atherosclerosis.2016.11.022

    [27]

    Ossoli A, Simonelli S, Vitali C, et al. Role of LCAT in Atherosclerosis[J]. J Atheroscler Thromb, 2016, 23(2): 119-27. doi: 10.5551/jat.32854

    [28]

    Sciarretta S, Volpe M, Sadoshima J. Mammalian target of rapamycin signaling in cardiac physiology and disease[J]. Circ Res, 2014, 114(3): 549-564. doi: 10.1161/CIRCRESAHA.114.302022

    [29]

    Wu YT, Bi YM, Tan ZB et al. Tanshinone I inhibits vascular smooth muscle cell proliferation by targeting insulin-like growth factor-1 receptor/phosphatidylinositol-3-kinase signaling pathway[J]. Eur J Pharmacol, 2019, 853: 93-102. doi: 10.1016/j.ejphar.2019.03.021

    [30]

    Caglayan E, Vantler M, Leppänen O, et al. Disruption of platelet-derived growth factor-dependent phosphatidylinositol 3-kinase and phospholipase Cγ 1 activity abolishes vascular smooth muscle cell proliferation and migration and attenuates neointima formation in vivo[J]. J Am Coll Cardiol, 2011, 57(25): 2527-2538. doi: 10.1016/j.jacc.2011.02.037

  • 加载中

(2)

(3)

计量
  • 文章访问数:  1603
  • PDF下载数:  295
  • 施引文献:  0
出版历程
收稿日期:  2022-07-17
刊出日期:  2023-01-13

目录