计算流体力学在非瓣膜性心房颤动中的研究进展

葛兰, 陈韬, 郭军, 等. 计算流体力学在非瓣膜性心房颤动中的研究进展[J]. 临床心血管病杂志, 2023, 39(2): 99-102. doi: 10.13201/j.issn.1001-1439.2023.02.005
引用本文: 葛兰, 陈韬, 郭军, 等. 计算流体力学在非瓣膜性心房颤动中的研究进展[J]. 临床心血管病杂志, 2023, 39(2): 99-102. doi: 10.13201/j.issn.1001-1439.2023.02.005
GE Lan, CHEN Tao, GUO Jun, et al. Use of computational fluid dynamics in patients with non-valvular atrial fibrillation[J]. J Clin Cardiol, 2023, 39(2): 99-102. doi: 10.13201/j.issn.1001-1439.2023.02.005
Citation: GE Lan, CHEN Tao, GUO Jun, et al. Use of computational fluid dynamics in patients with non-valvular atrial fibrillation[J]. J Clin Cardiol, 2023, 39(2): 99-102. doi: 10.13201/j.issn.1001-1439.2023.02.005

计算流体力学在非瓣膜性心房颤动中的研究进展

详细信息

Use of computational fluid dynamics in patients with non-valvular atrial fibrillation

More Information
  • 计算流体力学(CFD)是流体力学的重要分支。目前,利用不同的计算技术分析血液在心脏内的流动模式,已被用于评估心脏功能以及心血管疾病的早期诊断。本文着重介绍CFD在非瓣膜性心房颤动领域的研究进展。
  • 加载中
  • [1]

    Chugh SS, Havmoeller R, Narayanan K, et al. Worldwide epidemiology of atrial fibrillation: a Global Burden of Disease 2010 Study[J]. Circulation, 2014, 129(8): 837-847. doi: 10.1161/CIRCULATIONAHA.113.005119

    [2]

    Zhong L, Zhang JM, Su B, et al. Application of Patient-Specific Computational Fluid Dynamics in Coronary and Intra-Cardiac Flow Simulations: Challenges and Opportunities[J]. Front Physiol, 2018, (9): 742.

    [3]

    Salman HE, Yalcin HC. Computational Modeling of Blood Flow Hemodynamics for Biomechanical Investigation of Cardiac Development and Disease[J]. J Cardiovasc Dev Dis, 2021, 8(2).

    [4]

    Saglietto A, Fois M, Ridolfi L, et al. A computational analysis of atrial fibrillation effects on coronary perfusion across the different myocardial layers[J]. Sci Rep, 2022, 12(1): 841. doi: 10.1038/s41598-022-04897-6

    [5]

    Dueñas-Pamplona J, García JG, Sierra-Pallares J, et al. A comprehensive comparison of various patient-specific CFD models of the left atrium for atrial fibrillation patients[J]. Comput Biol Med, 2021, 133: 104423. doi: 10.1016/j.compbiomed.2021.104423

    [6]

    Bifulco SF, Scott GD, Sarairah S, et al. Computational modeling identifies embolic stroke of undetermined source patients with potential arrhythmic substrate[J]. Elife, 2021, 10.

    [7]

    Wang Y, Qiao YH, Mao YK, et al. Numerical prediction of thrombosis risk in left atrium under atrial fibrillation[J]. Math Biosci Eng, 2020, 3(17): 2348-2360.

    [8]

    Morales Ferez X, Mill J, Juhl KA, et al. Deep Learning Framework for Real-Time Estimation of in-silico Thrombotic Risk Indices in the Left Atrial Appendage[J]. Front Physiol, 2021, 12: 694945. doi: 10.3389/fphys.2021.694945

    [9]

    García-Villalba M, Rossini L, Gonzalo A, et al. Demonstration of Patient-Specific Simulations to Assess Left Atrial Appendage Thrombogenesis Risk[J]. Front Physiol, 2021, 12: 596596. doi: 10.3389/fphys.2021.596596

    [10]

    Shimada M, Akaishi M, Kobayashi T. Left atrial appendage morphology and cardiac function in patients with sinus rhythm[J]. J Echocardiogr, 2020, 18(2): 117-124. doi: 10.1007/s12574-020-00462-0

    [11]

    Grigoriadis GI, Sakellarios AI, Kosmidou I, et al. Wall shear stress alterations at left atrium and left atrial appendage employing abnormal blood velocity profiles[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2020, 2020: 2565-2568.

    [12]

    Aguado AM, Olivares AL, Yagüe C, et al. In silico Optimization of Left Atrial Appendage Occluder Implantation Using Interactive and Modeling Tools[J]. Front Physiol, 2019, 10: 237. doi: 10.3389/fphys.2019.00237

    [13]

    Jia D, Jeon B, Park HB, et al. Image-Based Flow Simulations of Pre-and Post-left Atrial Appendage Closure in the Left Atrium[J]. Cardiovasc Eng Technol, 2019, 10(2): 225-241. doi: 10.1007/s13239-019-00412-7

    [14]

    Kim IS, Lim B, Shim J, et al. Clinical Usefulness of Computational Modeling-Guided Persistent Atrial Fibrillation Ablation: Updated Outcome of Multicenter Randomized Study[J]. Front Physiol, 2019, 10: 1512. doi: 10.3389/fphys.2019.01512

    [15]

    Koizumi R, Funamoto K, Hayase T, et al. Numerical analysis of hemodynamic changes in the left atrium due to atrial fibrillation[J]. J Biomech, 2015, 48(3): 472-478. doi: 10.1016/j.jbiomech.2014.12.025

    [16]

    García-Isla G, Olivares AL, Silva E, et al. Sensitivity analysis of geometrical parameters to study haemodynamics and thrombus formation in the left atrial appendage[J]. Int J Numer MethodsBiomed Eng, 2018: e3100.

    [17]

    Otani T, Al-Issa A, Pourmorteza A, et al. A Computational Framework for Personalized Blood Flow Analysis in the Human Left Atrium[J]. Ann Biomed Eng, 2016, 44(11): 3284-3294. doi: 10.1007/s10439-016-1590-x

    [18]

    Bosi GM, Cook A, Rai R, et al. Computational Fluid Dynamic Analysis of the Left Atrial Appendage to Predict Thrombosis Risk[J]. Front Cardiovasc Med, 2018, 5: 34. doi: 10.3389/fcvm.2018.00034

    [19]

    Menichini C, Xu XY. Mathematical modeling of thrombus formation in idealized models of aortic dissection: initial findings and potential applications[J]. J Math Biol, 2016, 73(5): 1205-1226. doi: 10.1007/s00285-016-0986-4

    [20]

    Aakre CA, McLeod CJ, Cha SS, et al. Comparison of clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation[J]. Stroke, 2014, 45(2): 426-431. doi: 10.1161/STROKEAHA.113.002585

    [21]

    Di Biase L, Natale A, Romero J. Thrombogenic and Arrhythmogenic Roles of the Left Atrial Appendage in Atrial Fibrillation[J]. Circulation, 2018, 138(18): 2036-2050. doi: 10.1161/CIRCULATIONAHA.118.034187

    [22]

    王喆, 江耀辉, 张悦坤, 等. 计算机断层摄影术心脏成像评价不同类型心房颤动患者左心房内形态结构的临床研究[J]. 临床心血管病杂志, 2020, 36(12): 1130-1134. https://www.cnki.com.cn/Article/CJFDTOTAL-LCXB202012013.htm

    [23]

    赵艳春, 宝金才, 高翔, 等. 超声心动图结合生物标记物在非瓣膜性心房颤动患者左心房血栓诊断中的意义[J]. 临床心血管病杂志, 2020, 36(9): 839-843. https://www.cnki.com.cn/Article/CJFDTOTAL-LCXB202009014.htm

    [24]

    Markl M, Lee DC, Furiasse N, et al. Left Atrial and Left Atrial Appendage 4D Blood Flow Dynamics in Atrial Fibrillation[J]. Circ Cardiovasc Imaging, 2016, 9(9): e004984.

    [25]

    Masci A, Barone L, Dedè L, et al. The Impact of Left Atrium Appendage Morphology on Stroke Risk Assessment in Atrial Fibrillation: A Computational Fluid Dynamics Study[J]. Front Physiol, 2018, 9: 1938.

    [26]

    Xiang J, Tutino VM, Snyder KV, et al. CFD: computational fluid dynamics or confounding factor dissemination? The role of hemodynamics in intracranial aneurysm rupture risk assessment[J]. AJNR Am J Neuroradiol, 2014, 35(10): 1849-1857. doi: 10.3174/ajnr.A3710

    [27]

    Paliwal N, Ali RL, Salvador M, et al. Presence of Left Atrial Fibrosis May Contribute to Aberrant Hemodynamics and Increased Risk of Stroke in Atrial Fibrillation Patients[J]. Front Physiol, 2021, 12: 657452.

  • 加载中
计量
  • 文章访问数:  1479
  • PDF下载数:  1054
  • 施引文献:  0
出版历程
收稿日期:  2022-03-31
刊出日期:  2023-02-13

目录