长QT综合征分子遗传学进展及国人基因变异汇总

李翠兰, 高元丰, 刘文玲. 长QT综合征分子遗传学进展及国人基因变异汇总[J]. 临床心血管病杂志, 2023, 39(3): 176-181. doi: 10.13201/j.issn.1001-1439.2023.03.004
引用本文: 李翠兰, 高元丰, 刘文玲. 长QT综合征分子遗传学进展及国人基因变异汇总[J]. 临床心血管病杂志, 2023, 39(3): 176-181. doi: 10.13201/j.issn.1001-1439.2023.03.004
LI Cuilan, GAO Yuanfeng, LIU Wenling. Advances in molecular genetics of long QT syndrome and summary of gene variants in Chinese[J]. J Clin Cardiol, 2023, 39(3): 176-181. doi: 10.13201/j.issn.1001-1439.2023.03.004
Citation: LI Cuilan, GAO Yuanfeng, LIU Wenling. Advances in molecular genetics of long QT syndrome and summary of gene variants in Chinese[J]. J Clin Cardiol, 2023, 39(3): 176-181. doi: 10.13201/j.issn.1001-1439.2023.03.004

长QT综合征分子遗传学进展及国人基因变异汇总

  • 基金项目:
    国家自然科学基金项目(No:81170089)
详细信息

Advances in molecular genetics of long QT syndrome and summary of gene variants in Chinese

More Information
  • 长QT综合征(LQTS)是首个被发现的心脏离子通道病,是引起青少年猝死的重要原因,包括先天性LQTS(cLQTS)和获得性LQTS(aLQTS)。已经发现了至少17个致病基因,但根据欧洲/美国/亚太/拉美心律学会最新发布的2022版心脏病基因检测专家共识,只建议对其中11个证据明确的基因进行临床常规检测。本文就17个LQTS亚型的分子致病机制及其特征性临床表现的最新进展进行综述,并对已报道的国人LQTS基因变异进行总结,最后讨论分子遗传学检测在LQTS诊断治疗中的作用。
  • 加载中
  • 表 1  证据明确的LQTS致病基因

    Table 1.  LQTS pathogenic genes with clear evidences

    基因 位点 表型-综合征 蛋白 电流(功能效应) 占比 ClinGen分类
    KCNQ1 11p15.5 LQT1,JLNS KCNQ1(Kv7.1) IKs(↓) 40%~55% 证据明确
    KCNH2 7q35-36 LQT2 hERG(Kv11.1) IKr(↓) 30%~45% 证据明确
    SCN5A 3p21-p24 LQT3 Nav1.5 INa1.5(↑) 5%~10% 证据明确
    CALM1 14q32.11 LQT14 Calmodulin ICa-L(↑) < 1% 证据明确
    CALM2 2p21 LQT15 Calmodulin ICa-L(↑) < 1% 证据明确
    CALM3 19q13.32 LQT16 Calmodulin ICa-L(↑) < 1% 证据明确
    TRDN 6q22.31 LQT17(TKOS) Triadin ICa-L(↑) < 1% 强证据
    KCNE1 21q22.1 LQT5,JLNS,a-LQTS KCNE1(minK) IKs(↓) < 1% 在aLQTS强证据,
    在JLNS证据明确
    KCNE2 21q22.1 LQT6,a-LQTS KCNE2(MiRP1) IKr(↓) < 1% 在aLQTS强证据
    KCNJ2 17q24.3 LQT7,ATS Kir2.1 IK1(↓) < 1% 在ATS证据明确
    CACNA1C 12p13.3 TS,LQT8 Cav1.2 ICa-L(↑) < 1% 在TS证据明确,
    在LQTS中等证据
    下载: 导出CSV

    表 2  证据有限的LQTS致病基因

    Table 2.  LQTS pathogenic genes with limited evidences

    基因 染色体座位 综合征 蛋白 电流(功能效应) 占比 ClinGen分类
    ANK2 4q25-q27 LQT4 Ankyrin-B NaV1.5(↑) < 1% 有争议
    CAV3 3p25 LQT9 Caveolin 3 NaV1.5(↑) < 1% 证据有限
    SCN4B 11q23.3 LQT10 Nav1.5 β4 NaV1.5(↑) < 1% 有争议
    AKAP9 7q21-q22 LQT11 AKAP-9(yotiao) Ik(↓) < 1% 有争议
    SNTA1 20q11.2 LQTS12 α1-Syntrophin NaV1.5(↑) < 1% 有争议
    KCNJ5 11q24.3 LQT13 Kir3.4(GIRK4) Kir3.4(↓) < 1% 有争议
    下载: 导出CSV
  • [1]

    Nader A, Massumi A, Cheng J, et al. Inherited arrhythmic disorders: long QT and Brugada syndromes[J]. Tex Heart Inst J, 2007, 34(1): 67-75.

    [2]

    Priori SG, Blomstrom-Lundqvist C, Mazzanti A, et al. 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: The Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology(ESC). Endorsed by: Association for European Paediatric and Congenital Cardiology(AEPC)[J]. Eur Heart J, 2015, 36(41): 2793-2867. doi: 10.1093/eurheartj/ehv316

    [3]

    Schwartz PJ, Crotti L, Insolia R. Long-QT syndrome: from genetics to management[J]. Circ Arrhythm Electrophysiol, 2012, 5(4): 868-877. doi: 10.1161/CIRCEP.111.962019

    [4]

    Nakano Y, Shimizu W. Genetics of long-QT syndrome[J]. J Hum Genet, 2016, 61(1): 51-55. doi: 10.1038/jhg.2015.74

    [5]

    Wallace E, Howard L, Liu M, et al. Long QT syndrome: genetics and future perspective[J]. Pediatr Cardiol, 2019, 40(7): 1419-1430. doi: 10.1007/s00246-019-02151-x

    [6]

    浦介麟, 张开滋, 李翠兰, 等. 遗传性心律失常[M]. 北京: 人民卫生出版社, 2010: 137-179.

    [7]

    李翠兰, 刘文玲, 高元丰. 先天性与获得性长QT综合征诊断治疗现状[J]. 心血管病学进展, 2021, 42(5): 385-391. doi: 10.16806/j.cnki.issn.1004-3934.2021.05.001

    [8]

    Wilde AAM, Semsarian C, Márquez MF, et al. European Heart Rhythm Association(EHRA)/Heart Rhythm Society(HRS)/Asia Pacific Heart Rhythm Society(APHRS)/Latin American Heart Rhythm Society(LAHRS)Expert Consensus Statement on the state of genetic testing for cardiac diseases[J]. Europace, 2022, 24(8): 1307-1367. doi: 10.1093/europace/euac030

    [9]

    Bohnen MS, Peng G, Robey SH, et al. Molecular pathophysiology of congenital long QT syndrome[J]. Physiol Rev, 2017, 97(1): 89-134. doi: 10.1152/physrev.00008.2016

    [10]

    Chen L, Kurokawa J, Kass RS. Phosphorylation of the A-kinase-anchoring protein Yotiao contributes to protein kinase A regulation of a heart potassium channel[J]. J Biol Chem, 2005, 280: 31347-31352. doi: 10.1074/jbc.M505191200

    [11]

    Zhang L, Timothy KW, Vincent GM, et al. Spectrum of ST-T-wave patterns and repolarization parameters in congenital long-QT syndrome: ECG findings identify genotypes[J]. Circulation, 2000, 102(23): 2849-2855. doi: 10.1161/01.CIR.102.23.2849

    [12]

    Giudicessi JR, Ackerman MJ. Genotype-and phenotype-guided management of congenital long QT syndrome[J]. Curr Probl Cardiol, 2013, 38(10): 417-455. doi: 10.1016/j.cpcardiol.2013.08.001

    [13]

    Ono M, Burgess DE, Schroder EA, et al. Long QT syndrome type 2: emerging strategies for correcting class 2 KCNH2(hERG)mutations and identifying new patients[J]. Biomolecules, 2020, 10(8): 1144. doi: 10.3390/biom10081144

    [14]

    Roberts JD, Krahn AD, Ackerman MJ, et al. Loss-of-function KCNE2 variants: true monogenic culprits of Long-QT syndrome or proarrhythmic variants requiring secondary provocation?[J]. Circ Arrhythm Electrophysiol, 2017, 10(8): e005282. doi: 10.1161/CIRCEP.117.005282

    [15]

    Boczek NJ, Gomez-Hurtado N, Ye D, et al. Spectrum and prevalence of CALM1-, CALM2-, and CALM3-encoded calmodulin variants in long QT syndrome and functional characterization of a novel long QT syndrome-associated calmodulin missense variant, E141G[J]. Circ Cardiovasc Genet, 2016, 9(2): 136-146. doi: 10.1161/CIRCGENETICS.115.001323

    [16]

    Clemens DJ, Tester DJ, Marty I, et al. Phenotype-guided whole genome analysis in a patient with genetically elusive long QT syndrome yields a novel TRDN-encoded triadin pathogenetic substrate for triadin knockout syndrome and reveals a novel primate-specific cardiac TRDN transcript[J]. Heart Rhythm, 2020, 17(6): 1017-1024. doi: 10.1016/j.hrthm.2020.01.012

    [17]

    Sarquella-Brugada G, Fernandez-Falgueras A, Cesar S, et al. Pediatric malignant arrhythmias caused by rare homozygous genetic variants in TRDN: a comprehensive interpretation[J]. Front Pediatr, 2021, 8: 601708. doi: 10.3389/fped.2020.601708

    [18]

    Swayne LA, Murphy NP, Asuri S, et al. Novel variant in the ANK2 membrane-binding domain is associated with Ankyrin-B syndrome and structural heart disease in a first nations population with a high rate of long QT Syndrome[J]. Circ Cardiovasc Genet, 2017, 10(1): e001537. doi: 10.1161/CIRCGENETICS.116.001537

    [19]

    Pérez-Riera AR, Barbosa-Barros R, Samesina N, et al. Andersen-tawil syndrome: a comprehensive review[J]. Cardiol Rev, 2021, 29(4): 165-177. doi: 10.1097/CRD.0000000000000326

    [20]

    Kokunai Y, Nakata T, Furuta M, et al. A Kir3.4 mutation causes Andersen-Tawil syndrome by an inhibitory effect on Kir2.1[J]. Neurology, 2014, 82(12): 1058-1064. doi: 10.1212/WNL.0000000000000239

    [21]

    Yang Y, Yang Y, Liang B, et al. Identification of a Kir3.4 mutation in congenital long QT syndrome[J]. Am J Hum Genet, 2010, 86(6): 872-880. doi: 10.1016/j.ajhg.2010.04.017

    [22]

    Aiba T. Recent understanding of clinical sequencing and gene-based risk stratification in inherited primary arrhythmia syndrome[J]. J Cardiol, 2019, 73(5): 335-342. doi: 10.1016/j.jjcc.2019.01.009

    [23]

    Garg P, Oikonomopoulos A, Chen H, et al. Genome editing of induced pluripotent stem cells to decipher cardiac channelopathy variant[J]. J Am Coll Cardiol, 2018, 72(1): 62-75. doi: 10.1016/j.jacc.2018.04.041

  • 全部国人突变汇总(共229个)
  • 加载中
计量
  • 文章访问数:  2259
  • PDF下载数:  1086
  • 施引文献:  0
出版历程
收稿日期:  2023-02-13
网络出版日期:  2023-03-01
刊出日期:  2023-03-13

目录