心脏磁共振成像在心力衰竭中的应用

李新立, 郑旭辉, 唐愿. 心脏磁共振成像在心力衰竭中的应用[J]. 临床心血管病杂志, 2023, 39(4): 251-254. doi: 10.13201/j.issn.1001-1439.2023.04.003
引用本文: 李新立, 郑旭辉, 唐愿. 心脏磁共振成像在心力衰竭中的应用[J]. 临床心血管病杂志, 2023, 39(4): 251-254. doi: 10.13201/j.issn.1001-1439.2023.04.003
LI Xinli, ZHENG Xuhui, TANG Yuan. Clinical application of cardiac magnetic resonance imaging in heart failure[J]. J Clin Cardiol, 2023, 39(4): 251-254. doi: 10.13201/j.issn.1001-1439.2023.04.003
Citation: LI Xinli, ZHENG Xuhui, TANG Yuan. Clinical application of cardiac magnetic resonance imaging in heart failure[J]. J Clin Cardiol, 2023, 39(4): 251-254. doi: 10.13201/j.issn.1001-1439.2023.04.003

心脏磁共振成像在心力衰竭中的应用

  • 基金项目:
    国家自然科学基金(No:82270394、82200425、81970339)
详细信息

Clinical application of cardiac magnetic resonance imaging in heart failure

More Information
  • 尽管超声心动图主要用作大多数心血管患者的一线影像学检查手段,随着心脏磁共振成像(cardiac magnetic resonance,CMR)技术的发展,其不仅能够提供心脏、大血管及周围组织的结构与测量相关功能参数,而且其多角度多序列成像可分辨组织学特征,能够实现病理无创化影像化,在疾病的诊断、预后和危险分层中均发挥重要指导价值。本文将简要阐述CMR及其相关技术在心力衰竭中的应用现状。
  • 加载中
  • [1]

    中国心血管健康与疾病报告编写组, 胡盛寿. 中国心血管健康与疾病报告2020概要[J]. 中国循环杂志, 2021, 36(6): 521-545. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGXH202106001.htm

    [2]

    Wang H, Chai K, Du M, et al. Prevalence and Incidence of Heart Failure Among Urban Patients in China: A National Population-Based Analysis[J]. Circ Heart Fail, 2021, 14(10): e008406. doi: 10.1161/CIRCHEARTFAILURE.121.008406

    [3]

    Rozanski A, Muhlestein JB, Berman DS. Primary Prevention of CVD: The Role of Imaging Trials[J]. JACC Cardiovasc Imaging, 2017, 10(3): 304-317. doi: 10.1016/j.jcmg.2017.01.009

    [4]

    Seetharam K, Lerakis S. Cardiac magnetic resonance imaging: the future is bright[J]. F1000Res, 2019, 8.

    [5]

    Malik SB, Chen N, Parker RA 3rd, et al. Transthoracic Echocardiography: Pitfalls and Limitations as Delineated at Cardiac CT and MR Imaging-Erratum[J]. Radiographics, 2017, 37(3): 1004.

    [6]

    Pennell DJ, Sechtem UP, Higgins CB, et al. Clinical indications for cardiovascular magnetic resonance(CMR): Consensus Panel report[J]. J Cardiovasc Magn Reson, 2004, 6(4): 727-765. doi: 10.1081/JCMR-200038581

    [7]

    Leiner T, Bogaert J, Friedrich MG, et al. SCMR Position Paper(2020) on clinical indications for cardiovascular magnetic resonance[J]. J Cardiovasc Magn Reson, 2020, 22(1): 76. doi: 10.1186/s12968-020-00682-4

    [8]

    Busse A, Rajagopal R, Yücel S, et al. Cardiac MRI-Update 2020[J]. Radiologe, 2020, 60(Suppl 1): 33-40.

    [9]

    Russo V, Lovato L, Ligabue G. Cardiac MRI: technical basis[J]. Radiol Med, 2020, 125(11): 1040-1055. doi: 10.1007/s11547-020-01282-z

    [10]

    Granitz M, Motloch LJ, Granitz C, et al. Comparison of native myocardial T1 and T2 mapping at 1.5T and 3T in healthy volunteers: Reference values and clinical implications[J]. Wien Klin Wochenschr, 2019, 131(7-8): 143-155. doi: 10.1007/s00508-018-1411-3

    [11]

    Newman K, Wilson R, Roberts JM, et al. Tricuspid annular plane systolic excursion for the evaluation of right ventricular function in functional cardiac CT compared to MRI[J]. Clin Radiol, 2021, 76(8): 628. e1-628. e7. doi: 10.1016/j.crad.2021.02.018

    [12]

    Messroghli DR, Moon JC, Ferreira VM, et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: A consensus statement by the Society for Cardiovascular Magnetic Resonance(SCMR)endorsed by the European Association for Cardiovascular Imaging(EACVI)[J]. J Cardiovasc Magn Reson, 2017, 19(1): 75. doi: 10.1186/s12968-017-0389-8

    [13]

    Ho N, Nesbitt G, Hanneman K, et al. Assessment of Pericardial Disease with Cardiovascular MRI[J]. Heart Fail Clin, 2021, 17(1): 109-120. doi: 10.1016/j.hfc.2020.08.008

    [14]

    Cau R, Bassareo P, Suri JS, et al. The emerging role of atrial strain assessed by cardiac MRI in different cardiovascular settings: an up-to-date review[J]. Eur Radiol, 2022, 32(7): 4384-4394. doi: 10.1007/s00330-022-08598-6

    [15]

    Amzulescu MS, De Craene M, Langet H, et al. Myocardial strain imaging: review of general principles, validation, and sources of discrepancies[J]. Eur Heart J Cardiovasc Imaging, 2019, 20(6): 605-619. doi: 10.1093/ehjci/jez041

    [16]

    Di Marco A, Anguera I, Schmitt M, et al. Late Gadolinium Enhancement and the Risk for Ventricular Arrhythmias or Sudden Death in Dilated Cardiomyopathy: Systematic Review and Meta-Analysis[J]. JACC Heart Fail, 2017, 5(1): 28-38. doi: 10.1016/j.jchf.2016.09.017

    [17]

    Pirruccello JP, Bick A, Wang M, et al. Analysis of cardiac magnetic resonance imaging in 36, 000 individuals yields genetic insights into dilated cardiomyopathy[J]. Nat Commun, 2020, 11(1): 2254. doi: 10.1038/s41467-020-15823-7

    [18]

    Almeida PC, Lopes V, Ferreira LA, et al. Role of Cardiac Magnetic Resonance in the Diagnosis of Infiltrative, Hypertrophic, and Arrhythmogenic Cardiomyopathies[J]. Front Biosci(Schol Ed), 2022, 14(1): 7.

    [19]

    Weng Z, Yao J, Chan RH, et al. Prognostic Value of LGE-CMR in HCM: A Meta-Analysis[J]. JACC Cardiovasc Imaging, 2016, 9(12): 1392-1402. doi: 10.1016/j.jcmg.2016.02.031

    [20]

    Geske JB, Ommen SR, Gersh BJ. Hypertrophic Cardiomyopathy: Clinical Update[J]. JACC Heart Fail, 2018, 6(5): 364-375. doi: 10.1016/j.jchf.2018.02.010

    [21]

    Captur G, Manisty CH, Raman B, et al. Maximal Wall Thickness Measurement in Hypertrophic Cardiomyopathy: Biomarker Variability and its Impact on Clinical Care[J]. JACC Cardiovasc Imaging, 2021, 14(11): 2123-2134. doi: 10.1016/j.jcmg.2021.03.032

    [22]

    Carvalho FP, Erthal F, Azevedo CF. The Role of Cardiac MR Imaging in the Assessment of Patients with Cardiac Amyloidosis[J]. Magn Reson Imaging Clin N Am, 2019, 27(3): 453-463. doi: 10.1016/j.mric.2019.04.005

    [23]

    Saeed M, Van TA, Krug R, et al. Cardiac MR imaging: current status and future direction[J]. Cardiovasc Diagn Ther, 2015, 5(4): 290-310.

    [24]

    Liguori C, Farina D, Vaccher F, et al. Myocarditis: imaging up to date[J]. Radiol Med, 2020, 125(11): 1124-1134. doi: 10.1007/s11547-020-01279-8

    [25]

    Ojha V, Khurana R, Ganga KP, et al. Advanced cardiac magnetic resonance imaging in takotsubo cardiomyopathy[J]. Br J Radiol, 2020, 93(1115): 20200514. doi: 10.1259/bjr.20200514

    [26]

    Rochitte CE, Liberato G, Silva MC. Comprehensive Assessment of Cardiac Involvement in Muscular Dystrophies by Cardiac MR Imaging[J]. Magn Reson Imaging Clin N Am, 2019, 27(3): 521-531. doi: 10.1016/j.mric.2019.04.009

    [27]

    Kalisz K, Rajiah P. Impact of cardiac magnetic resonance imaging in non-ischemic cardiomyopathies[J]. World J Cardiol, 2016, 8(2): 132-145. doi: 10.4330/wjc.v8.i2.132

    [28]

    Tadic M, Cuspidi C, Saeed S, et al. The role of cardiac magnetic resonance in diagnosis of cardiac sarcoidosis[J]. Heart Fail Rev, 2021, 26(3): 653-660. doi: 10.1007/s10741-020-10035-z

    [29]

    Corrado D, Zorzi A, Cipriani A, et al. Evolving Diagnostic Criteria for Arrhythmogenic Cardiomyopathy[J]. J Am Heart Assoc, 2021, 10(18): e021987. doi: 10.1161/JAHA.121.021987

    [30]

    Castrichini M, Eldemire R, Groves DW, et al. Clinical and genetic features of arrhythmogenic cardiomyopathy: diagnosis, management and the heart failure perspective[J]. Prog Pediatr Cardiol, 2021, 63: 101459. doi: 10.1016/j.ppedcard.2021.101459

    [31]

    Chun KH, Oh J, Hong YJ, et al. Prognostic Cardiac Magnetic Resonance Markers of Left Ventricular Involvement in Arrhythmogenic Cardiomyopathy for Predicting Heart Failure Outcomes[J]. J Am Heart Assoc, 2022, 11(6): e023167. doi: 10.1161/JAHA.121.023167

    [32]

    Petersen SE, Selvanayagam JB, Wiesmann F, et al. Left ventricular non-compaction: insights from cardiovascular magnetic resonance imaging[J]. J Am Coll Cardiol, 2005, 46(1): 101-105. doi: 10.1016/j.jacc.2005.03.045

    [33]

    Gunda S, Ghannam M, Liang JJ, et al. The value of cardiac magnetic resonance imaging and programmed ventricular stimulation in patients with ventricular noncompaction and ventricular arrhythmias[J]. J Cardiovasc Electrophysiol, 2021, 32(3): 745-754. doi: 10.1111/jce.14884

    [34]

    Szücs A, Kiss AR, Gregor Z, et al. Changes in strain parameters at different deterioration levels of left ventricular function: A cardiac magnetic resonance feature-tracking study of patients with left ventricular noncompaction[J]. Int J Cardiol, 2021, 331: 124-130. doi: 10.1016/j.ijcard.2021.01.072

    [35]

    Dreisbach JG, Mathur S, Houbois CP, et al. Cardiovascular magnetic resonance based diagnosis of left ventricular non-compaction cardiomyopathy: impact of cine bSSFP strain analysis[J]. J Cardiovasc Magn Reson, 2020, 22(1): 9. doi: 10.1186/s12968-020-0599-3

    [36]

    Perry R, Shah R, Saiedi M, et al. The Role of Cardiac Imaging in the Diagnosis and Management of Anderson-Fabry Disease[J]. JACC Cardiovasc Imaging, 2019, 12(7 Pt 1): 1230-1242.

    [37]

    Militaru S, Ginghina C, Popescu BA, et al. Multimodality imaging in Fabry cardiomyopathy: from early diagnosis to therapeutic targets[J]. Eur Heart J Cardiovasc Imaging, 2018, 19(12): 1313-1322.

    [38]

    Augusto JB, Johner N, Shah D, et al. The myocardial phenotype of Fabry disease pre-hypertrophy and pre-detectable storage[J]. Eur Heart J Cardiovasc Imaging, 2021, 22(7): 790-799. doi: 10.1093/ehjci/jeaa101

    [39]

    Meloni A, Maggio A, Positano V, et al. CMR for myocardial iron overload quantification: calibration curve from the MIOT Network[J]. Eur Radiol, 2020, 30(6): 3217-3225. doi: 10.1007/s00330-020-06668-1

    [40]

    Tahir E, Fischer R, Grosse R, et al. Strain Analysis Using Feature-Tracking CMR to Detect LV Systolic Dysfunction in Myocardial Iron Overload Disease[J]. JACC Cardiovasc Imaging, 2020, 13(10): 2267-2268. doi: 10.1016/j.jcmg.2020.05.026

    [41]

    Miura S, Naya M, Yamashita T. Iron Deficiency Anemia-Induced Cardiomyopathy With Congestive Heart Failure: Reversible Cardiac Dysfunction Assessed by Multi-Imaging Modalities[J]. JACC Case Rep, 2020, 2(11): 1806-1811. doi: 10.1016/j.jaccas.2020.07.051

    [42]

    Nagao M, Matsuo Y, Kamitani T, et al. Quantification of myocardial iron deficiency in nonischemic heart failure by cardiac T2* magnetic resonance imaging[J]. Am J Cardiol, 2014, 113(6): 1024-1030. doi: 10.1016/j.amjcard.2013.11.061

    [43]

    Yang Z, Wang H, Chang S, et al. Left ventricular strain-curve morphology to distinguish between constrictive pericarditis and restrictive cardiomyopathy[J]. ESC Heart Fail, 2021, 8(6): 4863-4872. doi: 10.1002/ehf2.13679

    [44]

    Chetrit M, Natalie Szpakowski N, Desai MY. Multimodality imaging for the diagnosis and treatment of constrictive pericarditis[J]. Expert Rev Cardiovasc Ther, 2019, 17(9): 663-672. doi: 10.1080/14779072.2019.1657832

  • 加载中
计量
  • 文章访问数:  1585
  • PDF下载数:  421
  • 施引文献:  0
出版历程
收稿日期:  2023-03-06
刊出日期:  2023-04-13

目录