微管与心力衰竭

况文龙, 陈霄, 周子华. 微管与心力衰竭[J]. 临床心血管病杂志, 2023, 39(4): 265-269. doi: 10.13201/j.issn.1001-1439.2023.04.007
引用本文: 况文龙, 陈霄, 周子华. 微管与心力衰竭[J]. 临床心血管病杂志, 2023, 39(4): 265-269. doi: 10.13201/j.issn.1001-1439.2023.04.007
KUANG Wenlong, CHEN Xiao, ZHOU Zihua. Microtubules and heart failure[J]. J Clin Cardiol, 2023, 39(4): 265-269. doi: 10.13201/j.issn.1001-1439.2023.04.007
Citation: KUANG Wenlong, CHEN Xiao, ZHOU Zihua. Microtubules and heart failure[J]. J Clin Cardiol, 2023, 39(4): 265-269. doi: 10.13201/j.issn.1001-1439.2023.04.007

微管与心力衰竭

  • 基金项目:
    国家自然科学基金面上项目(No:82070378,81974106)
详细信息

Microtubules and heart failure

More Information
  • 心肌细胞的微管对维持心肌细胞的正常结构、功能有着密切的关系。而微管的稳定性主要是受微管相关蛋白(MAPs)调节,包括MAP2、MAP4及tau等。翻译后修饰(PTMs)对MAP蛋白的表达和功能的正常发挥有着重要作用。在心力衰竭(心衰)情况下,通常会发生不同程度异常的PTMs,通过调控这些异常的修饰作用可以对心衰进行干预和治疗。因此,本文从心肌细胞微管的功能、微管蛋白的调控等方面出发,对近年来国内外的心衰与微管调控相关研究进行总结,以期为心衰治疗提供理论参考。
  • 加载中
  • 图 1  微管及微管蛋白PTMs的示意图

    Figure 1.  Schematic representation of microtubules and PTMs of tubulin

  • [1]

    McDonagh TA, Metra M, Adamo M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure[J]. Eur Heart J, 2021, 42(36): 3599-3726. doi: 10.1093/eurheartj/ehab368

    [2]

    程敏, 廖玉华, 袁璟. 2022 ESC速递: 心力衰竭相关临床研究解读[J]. 临床心血管病杂志, 2022, 38(10): 774-776. https://www.cnki.com.cn/Article/CJFDTOTAL-LCXB202210003.htm

    [3]

    Truby LK, Rogers JG. Advanced Heart Failure: Epidemiology, Diagnosis, and Therapeutic Approaches[J]. JACC Heart Fail, 2020, 8(7): 523-536. doi: 10.1016/j.jchf.2020.01.014

    [4]

    Tomasoni D, Adamo M, Lombardi CM, et al. Highlights in heart failure[J]. ESC Heart Fail, 2019, 6(6): 1105-1127. doi: 10.1002/ehf2.12555

    [5]

    Meilhac SM, Buckingham ME. The deployment of cell lineages that form the mammalian heart[J]. Nat Rev Cardiol, 2018, 15(11): 705-724. doi: 10.1038/s41569-018-0086-9

    [6]

    Litviňuková M, Talavera-López C, Maatz H, et al. Cells of the adult human heart[J]. Nature, 2020, 588(7838): 466-472. doi: 10.1038/s41586-020-2797-4

    [7]

    Lopaschuk GD, Karwi QG, Tian R, et al. Cardiac Energy Metabolism in Heart Failure[J]. Circ Res, 2021, 128(10): 1487-1513. doi: 10.1161/CIRCRESAHA.121.318241

    [8]

    Whelan RS, Kaplinskiy V, Kitsis RN. Cell death in the pathogenesis of heart disease: mechanisms and significance[J]. Annu Rev Physiol, 2010, 72: 19-44. doi: 10.1146/annurev.physiol.010908.163111

    [9]

    柯樊, 廖梦阳, 邱志华, 等. β肾上腺素能受体在梗死后心脏重构中作用的研究进展[J]. 临床心血管病杂志, 2021, 37(4): 298-303. doi: 10.13201/j.issn.1001-1439.2021.04.003

    [10]

    Steele DF, Fedida D. Cytoskeletal roles in cardiac ion channel expression[J]. Biochimica Et Biophysica Acta, 2014, 1838(2): 665-673. doi: 10.1016/j.bbamem.2013.05.001

    [11]

    Dehmelt L, Halpain S. The MAP2/Tau family of microtubule-associated proteins[J]. Genome Biol, 2005, 6(1): 204.

    [12]

    Magiera MM, Singh P, Gadadhar S, et al. Tubulin Posttranslational Modifications and Emerging Links to Human Disease[J]. Cell, 2018, 173(6): 1323-1327. doi: 10.1016/j.cell.2018.05.018

    [13]

    Caporizzo MA, Chen CY, Prosser BL. Cardiac microtubules in health and heart disease[J]. Exp Biol Med(Maywood), 2019, 244(15): 1255-1272. doi: 10.1177/1535370219868960

    [14]

    Goldstein MA, Entman ML. Microtubules in mammalian heart muscle[J]. J Cell Biol, 1979, 80(1): 183-195. doi: 10.1083/jcb.80.1.183

    [15]

    Caporizzo MA, Prosser BL. The microtubule cytoskeleton in cardiac mechanics and heart failure[J]. Nat Rev Cardiol, 2022, 19(6): 364-378. doi: 10.1038/s41569-022-00692-y

    [16]

    Steele DF, Eldstrom J, Fedida D. Mechanisms of cardiac potassium channel trafficking[J]. J Physiol, 2007, 582(Pt 1): 17-26.

    [17]

    Goodson HV, Jonasson EM. Microtubules and Microtubule-Associated Proteins[J]. Cold Spring Harb Perspect Biol, 2018, 10(6): a022608. doi: 10.1101/cshperspect.a022608

    [18]

    Chen CY, Caporizzo MA, Bedi K, et al. Suppression of detyrosinated microtubules improves cardiomyocyte function in human heart failure[J]. Nat Med, 2018, 24(8): 1225-1233. doi: 10.1038/s41591-018-0046-2

    [19]

    Zile MR, Green GR, Schuyler GT, et al. Cardiocyte cytoskeleton in patients with left ventricular pressure overload hypertrophy[J]. J Am Coll Cardiol, 2001, 37(4): 1080-1084. doi: 10.1016/S0735-1097(00)01207-9

    [20]

    Witjas-Paalberends ER, Güçlü A, Germans T, et al. Gene-specific increase in the energetic cost of contraction in hypertrophic cardiomyopathy caused by thick filament mutations[J]. Cardiovasc Res, 2014, 103(2): 248-257. doi: 10.1093/cvr/cvu127

    [21]

    Bollen IAE, van der Meulen M, de Goede K, et al. Cardiomyocyte Hypocontractility and Reduced Myofibril Density in End-Stage Pediatric Cardiomyopathy[J]. Front Physiol, 2017, 8: 1103. doi: 10.3389/fphys.2017.01103

    [22]

    Scholz D, Baicu CF, Tuxworth WJ, et al. Microtubule-dependent distribution of mRNA in adult cardiocytes[J]. Am J Physiol Heart Circ Physiol, 2008, 294(3): H1135-H1144. doi: 10.1152/ajpheart.01275.2007

    [23]

    Robison P, Caporizzo MA, Ahmadzadeh H, et al. Detyrosinated microtubules buckle and bear load in contracting cardiomyocytes[J]. Science, 2016, 352(6284): aaf0659. doi: 10.1126/science.aaf0659

    [24]

    Chinnakkannu P, Samanna V, Cheng G, et al. Site-specific microtubule-associated protein 4 dephosphorylation causes microtubule network densification in pressure overload cardiac hypertrophy[J]. J Biol Chem, 2010, 285(28): 21837-21848. doi: 10.1074/jbc.M110.120709

    [25]

    Cheng G, Takahashi M, Shunmugavel A, et al. Basis for MAP4 dephosphorylation-related microtubule network densification in pressure overload cardiac hypertrophy[J]. J Biol Chem, 2010, 285(49): 38125-38140. doi: 10.1074/jbc.M110.148650

    [26]

    Illenberger S, Drewes G, Trinczek B, et al. Phosphorylation of microtubule-associated proteins MAP2 and MAP4 by the protein kinase p110mark. Phosphorylation sites and regulation of microtubule dynamics[J]. J Biol Chem, 1996, 271(18): 10834-10843. doi: 10.1074/jbc.271.18.10834

    [27]

    Trinczek B, Brajenovic M, Ebneth A, et al. MARK4 is a novel microtubule-associated proteins/microtubule affinity-regulating kinase that binds to the cellular microtubule network and to centrosomes[J]. J Biol Chem, 2004, 279(7): 5915-5923. doi: 10.1074/jbc.M304528200

    [28]

    Drewes G, Ebneth A, Mandelkow EM. MAPs, MARKs and microtubule dynamics[J]. Trends Biochem Sci, 1998, 23(8): 307-311. doi: 10.1016/S0968-0004(98)01245-6

    [29]

    Yu X, Chen X, Amrute-Nayak M, et al. MARK4 controls ischaemic heart failure through microtubule detyrosination[J]. Nature, 2021, 594(7864): 560-565. doi: 10.1038/s41586-021-03573-5

    [30]

    L'Hernault SW, Rosenbaum JL. Chlamydomonas alpha-tubulin is posttranslationally modified by acetylation on the epsilon-amino group of a lysine[J]. Biochemistry, 1985, 24(2): 473-478. doi: 10.1021/bi00323a034

    [31]

    Maruta H, Greer K, Rosenbaum JL. The acetylation of alpha-tubulin and its relationship to the assembly and disassembly of microtubules[J]. J Cell Biol, 1986, 103(2): 571-579. doi: 10.1083/jcb.103.2.571

    [32]

    Xu Z, Schaedel L, Portran D, et al. Microtubules acquire resistance from mechanical breakage through intralumenal acetylation[J]. Science, 2017, 356(6335): 328-332. doi: 10.1126/science.aai8764

    [33]

    Choudhary C, Kumar C, Gnad F, et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions[J]. Science, 2009, 325(5942): 834-840. doi: 10.1126/science.1175371

    [34]

    Chu CW, Hou F, Zhang J, et al. A novel acetylation of β-tubulin by San modulates microtubule polymerization via down-regulating tubulin incorporation[J]. Mol Biol Cell, 2011, 22(4): 448-456. doi: 10.1091/mbc.e10-03-0203

    [35]

    Akella JS, Wloga D, Kim J, et al. MEC-17 is an alpha-tubulin acetyltransferase[J]. Nature, 2010, 467(7312): 218-222. doi: 10.1038/nature09324

    [36]

    Shida T, Cueva JG, Xu Z, et al. The major alpha-tubulin K40 acetyltransferase alphaTAT1 promotes rapid ciliogenesis and efficient mechanosensation[J]. Proc Natl Acad Sci U S A, 2010, 107(50): 21517-21522. doi: 10.1073/pnas.1013728107

    [37]

    Palazzo A, Ackerman B, Gundersen GG. Cell biology: Tubulin acetylation and cell motility[J]. Nature, 2003, 421(6920): 230.

    [38]

    North BJ, Marshall BL, Borra MT, et al. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase[J]. Mol Cell, 2003, 11(2): 437-444. doi: 10.1016/S1097-2765(03)00038-8

    [39]

    McLendon PM, Ferguson BS, Osinska H, et al. Tubulin hyperacetylation is adaptive in cardiac proteotoxicity by promoting autophagy[J]. Proc Natl Acad Sci U S A, 2014, 111(48): E5178-E5186.

    [40]

    Tao H, Yang J-J, Shi K-H, et al. Epigenetic factors MeCP2 and HDAC6 control α-tubulin acetylation in cardiac fibroblast proliferation and fibrosis[J]. Inflamm Res, 2016, 65(5): 415-426. doi: 10.1007/s00011-016-0925-2

    [41]

    Villalobos E, Criollo A, Schiattarella GG, et al. Fibroblast Primary Cilia Are Required for Cardiac Fibrosis[J]. Circulation, 2019, 139(20): 2342-2357. doi: 10.1161/CIRCULATIONAHA.117.028752

    [42]

    Eddé B, Rossier J, Le Caer JP, et al. Posttranslational glutamylation of alpha-tubulin[J]. Science, 1990, 247(4938): 83-85. doi: 10.1126/science.1967194

    [43]

    Valenstein ML, Roll-Mecak A. Graded Control of Microtubule Severing by Tubulin Glutamylation[J]. Cell, 2016, 164(5): 911-921. doi: 10.1016/j.cell.2016.01.019

    [44]

    Kerr JP, Robison P, Shi G, et al. Detyrosinated microtubules modulate mechanotransduction in heart and skeletal muscle[J]. Nature Communications, 2015, 6: 8526. doi: 10.1038/ncomms9526

    [45]

    Ki SM, Kim JH, Won SY, et al. CEP41-mediated ciliary tubulin glutamylation drives angiogenesis through AURKA-dependent deciliation[J]. EMBO Rep, 2020, 21(2): e48290.

    [46]

    Fan Z, Peng W, Wang Z, et al. Identification of biomarkers associated with metabolic cardiovascular disease using mRNA-SNP-miRNA regulatory network analysis[J]. BMC Cardiovasc Disord, 2021, 21(1): 351. doi: 10.1186/s12872-021-02166-4

    [47]

    Saji K, Fukumoto Y, Suzuki J, et al. Colchicine, a microtubule depolymerizing agent, inhibits myocardial apoptosis in rats[J]. Tohoku J Exp Med, 2007, 213(2): 139-148. doi: 10.1620/tjem.213.139

    [48]

    Caporizzo MA, Chen CY, Bedi K, et al. Microtubules Increase Diastolic Stiffness in Failing Human Cardiomyocytes and Myocardium[J]. Circulation, 2020, 141(11): 902-915. doi: 10.1161/CIRCULATIONAHA.119.043930

    [49]

    Caporizzo MA, Chen CY, Salomon AK, et al. Microtubules Provide a Viscoelastic Resistance to Myocyte Motion[J]. Biophys J, 2018, 115(9): 1796-1807. doi: 10.1016/j.bpj.2018.09.019

    [50]

    Fassett JT, Xu X, Hu X, et al. Adenosine regulation of microtubule dynamics in cardiac hypertrophy[J]. Am J Physiol Heart Circ Physiol, 2009, 297(2): H523-H532. doi: 10.1152/ajpheart.00462.2009

    [51]

    Fassett J, Xu X, Kwak D, et al. Adenosine kinase attenuates cardiomyocyte microtubule stabilization and protects against pressure overload-induced hypertrophy and LV dysfunction[J]. J Mol Cell Cardiol, 2019, 130: 49-58. doi: 10.1016/j.yjmcc.2019.03.015

  • 加载中

(1)

计量
  • 文章访问数:  1571
  • PDF下载数:  510
  • 施引文献:  0
出版历程
收稿日期:  2022-12-26
刊出日期:  2023-04-13

目录