LAD纵深型心肌桥形态与CT-FFR的关系研究

陈萍, 罗琳, 陈强, 等. LAD纵深型心肌桥形态与CT-FFR的关系研究[J]. 临床心血管病杂志, 2023, 39(4): 297-302. doi: 10.13201/j.issn.1001-1439.2023.04.012
引用本文: 陈萍, 罗琳, 陈强, 等. LAD纵深型心肌桥形态与CT-FFR的关系研究[J]. 临床心血管病杂志, 2023, 39(4): 297-302. doi: 10.13201/j.issn.1001-1439.2023.04.012
CHEN Ping, LUO Lin, CHEN Qiang, et al. Correlation study between morphology of deep myocardial bridge over LAD and CT-FFR[J]. J Clin Cardiol, 2023, 39(4): 297-302. doi: 10.13201/j.issn.1001-1439.2023.04.012
Citation: CHEN Ping, LUO Lin, CHEN Qiang, et al. Correlation study between morphology of deep myocardial bridge over LAD and CT-FFR[J]. J Clin Cardiol, 2023, 39(4): 297-302. doi: 10.13201/j.issn.1001-1439.2023.04.012

LAD纵深型心肌桥形态与CT-FFR的关系研究

  • 基金项目:
    深圳市科创委孔雀计划团队资助项目(No:KQTD2016112809330877)
详细信息

Correlation study between morphology of deep myocardial bridge over LAD and CT-FFR

More Information
  • 目的 通过冠状动脉CT血管造影(coronary CT angiography,CCTA)检查探讨左冠状动脉前降支(left anterior descending coronary artery,LAD)纵深型心肌桥(myocardial bridging,MB)形态与CT血流储备分数(CT-FFR)的关系。方法 回顾性分析2018年1月—2022年4月包头医学院第一附属医院影像科323例LAD纵深型MB患者的解剖学信息,并以CT-FFR≤0.80为心肌缺血的指标,将患者分为CT-FFR正常组(237例)及CT-FFR异常组(86例)。采用t检验分析比较2组各MB参数的差异,采用岭回归模型分析CT-FFR值的影响因素,通过ROC曲线分析差异有统计学意义的参数。结果 2组MB入口处位置、出口处位置、长度、肌肉指数、收缩期压迫程度及壁冠状动脉(mural coronary artery,MCA)最狭窄处面积、入口处面积、出口处面积差异均有统计学意义(P < 0.05)。岭回归方程显示,MB出口位置、长度及肌肉指数对CT-FFR值具有负向影响(P < 0.05),MCA面积对CT-FFR值具有正向影响(P < 0.05),并且MB长度、出口位置、肌肉指数对MB心肌缺血均具有较高的诊断价值,三者的曲线下面积(AUC)分别为0.85、0.80、0.79。结论 LAD纵深型MB的位置离冠状窦越近、MCA面积越窄,尤其是MB长度较长的患者,更容易出现心肌缺血的临床表现,应予以高度重视。
  • 加载中
  • 图 1  流程图

    Figure 1.  Flow chart

    图 2  MB位置、长度、深度、MCA面积及CT-FFR值测量图

    Figure 2.  MB position, length, depth, MCA area and CT-FFR value measurement map

    图 3  MB解剖学参数诊断CT-FFR异常效能的ROC曲线

    Figure 3.  ROC curve of MB anatomical parameters for diagnosing CT-FFR abnormalities

    表 1  2组LAD纵深型MB患者CCTA解剖学参数比较

    Table 1.  Comparison of anatomical parameters of CCTA in two groups of patients with LAD deep MB  X±S

    参数 CT-FFR正常组(237例) CT-FFR异常组(86例) t P
    MB入口位置/mm 47.8±10.1 44.8±8.9 -2.422 0.016
    MB最深处位置/mm 58.9±11.0 58.2±12.0 -0.547 0.585
    MB出口位置/mm 78.7±12.5 95.7±18.2 8.038 < 0.001
    MB长度/mm 30.8±11.1 49.8±16.4 10.001 < 0.001
    MB深度/mm 3.6±1.7 4.2±2.8 1.970 0.052
    MB肌肉指数 115.4±79.8 231.8±317.6 3.361 0.001
    MCA收缩期压迫指数/% 42.5±11.5 45.8±10.9 2.287 0.023
    MCA最狭窄处面积/mm2 1.8±0.7 1.4±0.5 -5.270 < 0.001
    MCA最深处面积/mm2 2.5±1.1 2.2±1.3 -1.995 0.047
    MCA入口处面积/mm2 5.1±2.2 4.6±2.4 -1.555 0.121
    MCA出口处面积/mm2 2.4±0.9 2.0±0.7 -4.722 < 0.001
    下载: 导出CSV

    表 2  影响MB患者CT-FFR值的岭回归分析

    Table 2.  Ridge Regression analysis affecting CT-FFR value in MB patients

    参数 非标准化系数 标准化系数 t P
    B 标准误 β
    常数 0.870 0.010 - 86.751 < 0.001
    MB入口位置 0.000 0.000 0.028 1.753 0.081
    MB最深处位置 0.000 0.000 0.001 0.034 0.973
    MB出口处位置 -0.001 0.000 -0.187 -12.063 < 0.001
    MB长度 -0.001 0.000 -0.199 -13.181 < 0.001
    MB深度 0.000 0.000 0.009 0.557 0.578
    MB肌肉指数 0.001 0.000 -0.081 -5.278 < 0.001
    MCA最狭窄处面积 0.009 0.001 0.126 7.966 < 0.001
    MCA最深处面积 0.003 0.001 0.067 3.740 < 0.001
    MCA入口处面积 0.002 0.000 0.093 5.882 < 0.001
    MCA出口处面积 0.006 0.001 0.100 5.473 < 0.001
    MCA收缩期压迫指数 0.000 0.000 -0.005 -0.299 0.765
    R2 0.503
    调整R2 0.485
    F F(11,310)=28.465,P < 0.001
    下载: 导出CSV
  • [1]

    Tarantini G, Migliore F, Cademartiri F, et al. Left Anterior Descending Artery Myocardial Bridging: A Clinical Approach[J]. J Am Coll Cardiol, 2016, 68(25): 2887-2899. doi: 10.1016/j.jacc.2016.09.973

    [2]

    王兰, 周子华, 郭瑄, 等. 114例心肌桥患者焦虑抑郁状况及其相关危险因素分析[J]. 临床心血管病杂志, 2018, 34(2): 162-165. doi: 10.13201/j.issn.1001-1439.2018.02.014

    [3]

    Zhao DH, Fan Q, Ning JX, et al. Myocardial bridge-related coronary heart disease: Independent influencing factors and their predicting value[J]. World J Clin Cases, 2019, 7(15): 1986-1995. doi: 10.12998/wjcc.v7.i15.1986

    [4]

    Kim YJ, Yong HS, Kim SM, et al. Korean guidelines for the appropriate use of cardiac CT[J]. Korean J Radiol, 2015, 16(2): 251-285. doi: 10.3348/kjr.2015.16.2.251

    [5]

    Fairbairn TA, Nieman K, Akasaka T, et al. Real-world clinical utility and impact on clinical decision-making of coronary computed tomography angiography-derived fractional flow reserve: lessons from the ADVANCE Registry[J]. Eur Heart J, 2018, 39(41): 3701-3711. doi: 10.1093/eurheartj/ehy530

    [6]

    徐浩, 张治, 解学乾, 等. 冠脉生理功能评估软件(DEEPVESSEL FFR)与有创FFR在评估冠脉缺血中的对比研究[J]. 诊断学理论与实践, 2021, 20(4): 384-390. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDLS202104013.htm

    [7]

    Wang ZQ, Zhou YJ, Zhao YX, et al. Diagnostic accuracy of a deep learning approach to calculate FFR from coronary CT angiography[J]. J Geriatr Cardiol, 2019, 16(1): 42-48.

    [8]

    Eftekhari A, Min J, Achenbach S, et al. Fractional flow reserve derived from coronary computed tomography angiography: diagnostic performance in hypertensive and diabetic patients[J]. Eur Heart J Cardiovasc Imaging, 2017, 18(12): 1351-1360. doi: 10.1093/ehjci/jew209

    [9]

    Zhuang B, Wang S, Zhao S, et al. Computed tomography angiography-derived fractional flow reserve(CT-FFR)for the detection of myocardial ischemia with invasive fractional flow reserve as reference: systematic review and meta-analysis[J]. Eur Radiol, 2020, 30(2): 712-725. doi: 10.1007/s00330-019-06470-8

    [10]

    Ishikawa Y, Akasaka Y, Suzuki K, et al. Anatomic properties of myocardial bridge predisposing to myocardial infarction[J]. Circulation, 2009, 120(5): 376-383. doi: 10.1161/CIRCULATIONAHA.108.820720

    [11]

    周帆, 闫静, 周长圣, 等. 基于冠状动脉CT血管成像的血流储备分数评估心肌桥血流动力学变化的研究[J]. 中华放射学杂志, 2019, 53(4): 274-280. https://cdmd.cnki.com.cn/Article/CDMD-10284-1019116223.htm

    [12]

    Gao Z, Wang X, Sun S, et al. Learning physical properties in complex visual scenes: An intelligent machine for perceiving blood flow dynamics from static CT angiography imaging[J]. Neural Netw, 2020, 123: 82-93. doi: 10.1016/j.neunet.2019.11.017

    [13]

    张明多, 南楠, 兰宏志, 等. 基于人工智能优化与计算流体力学的无创血流储备分数对冠状动脉狭窄缺血的诊断价值[J]. 心肺血管病杂志, 2022, 41(3): 243-247. https://www.cnki.com.cn/Article/CJFDTOTAL-XFXZ202203006.htm

    [14]

    Liu X, Wang Y, Zhang H, et al. Evaluation of fractional flow reserve in patients with stable angina: can CT compete with angiography?[J]. Eur Radiol, 2019, 29(7): 3669-3677. doi: 10.1007/s00330-019-06023-z

    [15]

    褚千琨, 高德宏, 张铭金, 等. RevolutionCT在心肌桥-壁冠状动脉及左心室功能测定的临床应用价值[J]. 现代医用影像学, 2022, 31(3): 402-407. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYY202203002.htm

    [16]

    Nakanishi R, Rajani R, Ishikawa Y, et al. Myocardial bridging on coronary CTA: an innocent bystander or a culprit in myocardial infarction?[J]. J Cardiovasc Comput Tomogr, 2012, 6(1): 3-13. doi: 10.1016/j.jcct.2011.10.015

    [17]

    闫玉洁, 袁俊强. 基于CCTA的血流储备分数对心肌桥心肌缺血的评估价值分析[J]. 实验与检验医学, 2021, 39(3): 649-651. doi: 10.3969/j.issn.1674-1129.2021.03.043

    [18]

    成水华, 倪炯, 刘君, 等. 基于人工智能技术的FFR_(CT)评估左冠状动脉前降支纵深型心肌桥血流动力学变化[J]. 中华医学杂志, 2021, 101(7): 464-469. doi: 10.3760/cma.j.cn112137-20200924-02709

    [19]

    Javadzadegan A, Moshfegh A, Mohammadi M, et al. Haemodynamic impacts of myocardial bridge length: A congenital heart disease[J]. Comput MethodsPrograms Biomed, 2019, 175: 25-33.

    [20]

    王庭俊, 吴可贵. 病例130: 64岁男性心电图: 异常Q波、ST-T改变[J]. 中华高血压杂志, 2013, 21(3): 291-294. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGZ201303035.htm

    [21]

    孙淑艳, 张娟. 64排螺旋CT与冠脉造影对心肌桥的对比研究[J]. 包头医学院学报, 2013, 29(2): 47-49. https://www.cnki.com.cn/Article/CJFDTOTAL-BTYX201302024.htm

    [22]

    杨漠源, 张敏秀, 贾圣琪, 等. 冠状动脉心肌桥合并近端狭窄病变的研究进展[J]. 中国介入心脏病学杂志, 2019, 27(11): 649-652. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJXB201911013.htm

    [23]

    Sharzehee M, Chang Y, Song JP, et al. Hemodynamic effects of myocardial bridging in patients with hypertrophic cardiomyopathy[J]. Am J Physiol Heart Circ Physiol, 2019, 317(6): H1282-H1291.

  • 加载中

(3)

(2)

计量
  • 文章访问数:  1117
  • PDF下载数:  289
  • 施引文献:  0
出版历程
收稿日期:  2022-12-19
刊出日期:  2023-04-13

目录