Application progress of single cell transcriptome sequencing in the study of atherosclerosis
-
摘要: 单细胞测序技术作为近10年来高速发展起来的一门新兴技术,能够在单个细胞水平上对基因组、转录组、表观遗传组、蛋白组甚至多组学联合进行高通量测序,以揭示细胞的异质性,并通过分析获得不同组织器官细胞的基因表达谱,从而帮助我们更加深入理解各个组织器官的细胞多样性。动脉粥样硬化是许多心血管疾病病理的主要原因,其所引起的并发症如心肌梗死和卒中是导致全球性死亡的重要原因。近年来,单细胞测序技术已被广泛地应用于动脉粥样硬化的研究,并取得了重要进展。本文主要就单细胞测序技术在动脉粥样硬化研究中的最新应用进展作一综述。Abstract: Single-cell sequencing technology is an emerging technology that has developed rapidly in the past decade. It can perform high-throughput sequencing of the genome, transcriptome, epigenome, proteome and even multi-omics at the single cell level to reveal cellular heterogeneity. By analyzing the gene expression profiles of cells in different tissues and organs, it helps us to better understand the cellular diversity of various tissues and organs. Atherosclerosis is the main cause of pathology of many cardiovascular diseases, and its complications such as myocardial infarction and stroke are important causes of global death. In recent years, single-cell sequencing technology has been widely used in the study of atherosclerosis and has made important progress. This article mainly reviews the latest application progress of single-cell sequencing technology in the study of atherosclerosis.
-
Key words:
- single cell sequencing /
- single-cell RNA-sequencing /
- atherosclerosis
-
[1] Linton MF, Babaev VR, Huang J, et al. Macrophage apoptosis and efferocytosis in the pathogenesis of atherosclerosis[J]. Circ J, 2016, 80: 2259-2268. doi: 10.1253/circj.CJ-16-0924
[2] Gonzalez L, Trigatti BL. Macrophage apoptosis and necrotic core development in atherosclerosis: a rapidly advancing field with clinical relevance to imaging and therapy[J]. Can J Cardiol, 2017, 33: 303-312. doi: 10.1016/j.cjca.2016.12.010
[3] Jaitin DA, Kenigsberg E, Keren-Shaul H, et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types[J]. Science, 2014, 343(6172): 776-779. doi: 10.1126/science.1247651
[4] Yasen A, Aini A, Wang H, et al. Progress and applications of single-cell sequencing techniques[J]. Infec Genetics Evolution, 2020, 80: 104198. doi: 10.1016/j.meegid.2020.104198
[5] Kashima Y, Sakamoto Y, Kaneko K, et al. Single-cell sequencing techniques from individual to multiomics analyses[J]. Experi Mol Med, 2020, 52(9): 1419-1427. doi: 10.1038/s12276-020-00499-2
[6] Ziegenhain C, Vieth B, Parekh S, et al. Comparative analysis of single-cell RNA sequencing methods[J]. Mol Cell, 2017, 65(4): 631-643, e4. doi: 10.1016/j.molcel.2017.01.023
[7] Tang F, Barbacioru C, Wang Y, et al. mRNA-Seq whole-transcriptome analysis of a single cell[J]. Nat Methods, 2009, 6(5): 377-382. doi: 10.1038/nmeth.1315
[8] McDonald A I, Shirali A S, Aragón R, et al. Endothelial regeneration of large vessels is a biphasic process driven by local cells with distinct proliferative capacities[J]. Cell stem cell, 2018, 23(2): 210-225. e6. doi: 10.1016/j.stem.2018.07.011
[9] Ma F, Hernadez G, Romay M, et al. Single Cell RNAseq to study vascular diversity and function[J]. Current Opin Hematol, 2021, 28(3): 221. doi: 10.1097/MOH.0000000000000651
[10] Vanlandewijck M, He L, Mäe MA, et al. A molecular atlas of cell types and zonation in the brain vasculature[J]. Nature, 2018, 554(7693): 475-480. doi: 10.1038/nature25739
[11] Su T, Stanley G, Sinha R, et al. Single-cell analysis of early progenitor cells that build coronary arteries[J]. Nature, 2018, 559(7714): 356-362. doi: 10.1038/s41586-018-0288-7
[12] Hedlund E, Deng Q. Single-cell RNA sequencing: Technical advancements and biological applications[J]. Mol Aspects Med, 2018, 59: 36-46. doi: 10.1016/j.mam.2017.07.003
[13] Picelli S. Full-Length Single-Cell RNA Sequencing with Smart-seq2[J]. Methods Mol Biol, 2019, 1979: 25-44.
[14] Zhang X, Li T, Liu F, et al. Comparative analysis of droplet-based ultra-high-throughput single-cell RNA-seq systems[J]. Molecular Cell, 2019, 73(1): 130-142. e5. doi: 10.1016/j.molcel.2018.10.020
[15] Zheng GX, Terry JM, Belgrader P, et al. Massively parallel digital transcriptional profiling of single cells[J]. Nat Commun, 2017, 8: 14049. doi: 10.1038/ncomms14049
[16] Wolf D, Gerhardt T, Winkels H, et al. Pathogenic autoimmunity in atherosclerosis evolves from initially protective apolipoprotein B100-reactive CD4+ T-regulatory cells[J]. Circulation, 2020, 142(13): 1279-1293. doi: 10.1161/CIRCULATIONAHA.119.042863
[17] Butcher MJ, Filipowicz AR, Waseem TC, et al. Atherosclerosis-driven Treg plasticity results in formation of a dysfunctional subset of plastic IFNγ+ Th1/Tregs[J]. Circ Res, 2016, 119(11): 1190-1203. doi: 10.1161/CIRCRESAHA.116.309764
[18] Winkels H, Ehinger E, Vassallo M, et al. Atlas of the immune cell repertoire in mouse atherosclerosis defined by single-cell RNA-sequencing and mass cytometry[J]. Circ Res, 2018, 122(12): 1675-1688. doi: 10.1161/CIRCRESAHA.117.312513
[19] Depuydt MAC, Prange KHM, Slenders L, et al. Microanatomy of the human atherosclerotic plaque by single-cell transcriptomics[J]. Circ Res, 2020, 127(11): 1437-1455. doi: 10.1161/CIRCRESAHA.120.316770
[20] Wolf D, Ley K. Immunity and inflammation in atherosclerosis[J]. Circ Res, 2019, 124(2): 315-327. doi: 10.1161/CIRCRESAHA.118.313591
[21] Sage AP, Tsiantoulas D, Binder CJ, et al. The role of B cells in atherosclerosis[J]. Nat Rev Cardiol, 2019, 16(3): 180-196. doi: 10.1038/s41569-018-0106-9
[22] Cochain C, Vafadarnejad E, Arampatzi P, et al. Single-cell RNA-seq reveals the transcriptional landscape and heterogeneity of aortic macrophages in murine atherosclerosis[J]. Circ Res, 2018, 122(12): 1661-1674. doi: 10.1161/CIRCRESAHA.117.312509
[23] 张苏慧, 张颖倩, 惠辉, 等. 流体剪切力作用于单核-巨噬细胞对动脉粥样硬化的影响[J]. 临床心血管病杂志, 2022, 38(5): 412-417. https://lcxxg.whuhzzs.com/article/doi/10.13201/j.issn.1001-1439.2022.05.015
[24] 田嘉珉, 陈羽斐, 沈伟. M2型巨噬细胞极化及其对动脉粥样硬化的影响[J]. 临床心血管病杂志, 2022, 38(10): 838-843. doi: 10.13201/j.issn.1001-1439.2022.10.016 https://lcxxg.whuhzzs.com/article/doi/10.13201/j.issn.1001-1439.2022.10.016
[25] Kim K, Shim D, Lee JS, et al. Transcriptome analysis reveals nonfoamy rather than foamy plaque macrophages are proinflammatory in atherosclerotic murine models[J]. Circ Res, 2018, 123(10): 1127-1142. doi: 10.1161/CIRCRESAHA.118.312804
[26] Lin JD, Nishi H, Poles J, et al. Single-cell analysis of fate-mapped macrophages reveals heterogeneity, including stem-like properties, during atherosclerosis progression and regression[J]. JCI Isight, 2019, 4(4): 110. http://pubmed.ncbi.nlm.nih.gov/30830865/
[27] Fernandez DM, Rahman AH, Fernandez NF, et al. Single-cell immune landscape of human atherosclerotic plaques[J]. Nat Med, 2019, 25(10): 1576-1588. doi: 10.1038/s41591-019-0590-4
[28] Kalluri AS, Vellarikkal SK, Edelman ER, et al. Single-cell analysis of the normal mouse aorta reveals functionally distinct endothelial cell populations[J]. Circulation, 2019, 140(2): 147-163. doi: 10.1161/CIRCULATIONAHA.118.038362
[29] Hu Z, Liu W, Hua X, et al. Single-cell transcriptomic atlas of different human cardiac arteries identifies cell types associated with vascular physiology[J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41(4): 1408-1427. doi: 10.1161/ATVBAHA.120.315373
[30] Cho J G, Lee A, Chang W, et al. Endothelial to mesenchymal transition represents a key link in the interaction between inflammation and endothelial dysfunction[J]. Frontiers in Immunology, 2018, 9: 294. doi: 10.3389/fimmu.2018.00294
[31] Chen PY, Qin L, Baeyens N, et al. Endothelial-to-mesenchymal transition drives atherosclerosis progression[J]. J Clin Investig, 2015, 125(12): 4514-4528. doi: 10.1172/JCI82719
[32] 薛新月, 畅智慧, 刘兆玉. 血管平滑肌细胞在血管钙化中的调控机制研究进展[J]. 临床心血管病杂志, 2020, 36(9): 870-873. https://www.cnki.com.cn/Article/CJFDTOTAL-LCXB202009020.htm
[33] Shanahan CM, Weissberg PL. Smooth muscle cell heterogeneity: patterns of gene expression in vascular smooth muscle cells in vitro and in vivo[J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 1998, 18(3): 333-338. doi: 10.1161/01.ATV.18.3.333
[34] Hao H, Gabbiani G, Bochaton-Piallat ML. Arterial smooth muscle cell heterogeneity: implications for atherosclerosis and restenosis development[J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23(9): 1510-1520. doi: 10.1161/01.ATV.0000090130.85752.ED
[35] Allahverdian S, Chaabane C, Boukais K, et al. Smooth muscle cell fate and plasticity in atherosclerosis[J]. Cardiovasc Res, 2018, 114(4): 540-550. doi: 10.1093/cvr/cvy022
[36] Dobnikar L, Taylor AL, Chappell J, et al. Disease-relevant transcriptional signatures identified in individual smooth muscle cells from healthy mouse vessels[J]. Nat Commun, 2018, 9(1): 1-17. doi: 10.1038/s41467-017-02088-w
[37] Wirka RC, Wagh D, Paik D T, et al. Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed by single-cell analysis[J]. Nat Med, 2019, 25(8): 1280-1289. http://pubmed.ncbi.nlm.nih.gov/31359001/
[38] Pan H, Xue C, Auerbach B J, et al. Single-cell genomics reveals a novel cell state during smooth muscle cell phenotypic switching and potential therapeutic targets for atherosclerosis in mouse and human[J]. Circulation, 2020, 142(21): 2060-2075. http://oldmed.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM32962412
[39] Alencar GF, Owsiany KM, Karnewar S, et al. Stem cell pluripotency genes Klf4 and Oct4 regulate complex SMC phenotypic changes critical in late-stage atherosclerotic lesion pathogenesis[J]. Circulation, 2020, 142(21): 2045-2059. http://oldmed.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM32674599
计量
- 文章访问数: 2176
- PDF下载数: 1057
- 施引文献: 0