冠状动脉造影和血管内影像来源血流储备分数的基本原理和研究进展

胡新央, 吴献鹏. 冠状动脉造影和血管内影像来源血流储备分数的基本原理和研究进展[J]. 临床心血管病杂志, 2023, 39(10): 745-748. doi: 10.13201/j.issn.1001-1439.2023.10.002
引用本文: 胡新央, 吴献鹏. 冠状动脉造影和血管内影像来源血流储备分数的基本原理和研究进展[J]. 临床心血管病杂志, 2023, 39(10): 745-748. doi: 10.13201/j.issn.1001-1439.2023.10.002
HU Xinyang, WU Xianpeng. The basic principles and recent advancements in coronary angiography and intravascular imaging-derived fractional flow reserve[J]. J Clin Cardiol, 2023, 39(10): 745-748. doi: 10.13201/j.issn.1001-1439.2023.10.002
Citation: HU Xinyang, WU Xianpeng. The basic principles and recent advancements in coronary angiography and intravascular imaging-derived fractional flow reserve[J]. J Clin Cardiol, 2023, 39(10): 745-748. doi: 10.13201/j.issn.1001-1439.2023.10.002

冠状动脉造影和血管内影像来源血流储备分数的基本原理和研究进展

详细信息

The basic principles and recent advancements in coronary angiography and intravascular imaging-derived fractional flow reserve

More Information
  • 血流储备分数是有创评估冠状动脉缺血病变的金标准,但额外压力导丝以及充血试剂的使用,限制了其在临床中的广泛应用。近年来,基于计算生理学技术的冠状动脉造影和血管内影像来源的血流储备分数得到快速发展,能在避免压力导丝和充血试剂使用的同时,实现依据解剖学影像完成冠状动脉的功能学评估。定量血流分数、基于光学相干断层成像的血流储备分数以及基于血管内超声的血流储备分数是该领域的研究热点和前沿技术。因此,本文将对上述技术的基本原理和研究展开综述。
  • 加载中
  • [1]

    Park SJ, Kang SJ, Ahn JM, et al. Visual-functional mismatch between coronary angiography and fractional flow reserve[J]. JACC Cardiovasc Interv, 2012, 5(10): 1029-1036. doi: 10.1016/j.jcin.2012.07.007

    [2]

    中华医学会心血管病学分会介入心脏病学组. 中国经皮冠状动脉介入治疗指南(2016)[J]. 中华心血管病杂志, 2016, 44(5): 382-400. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJXB201612016.htm

    [3]

    Neumann FJ, Sousa-Uva M, Ahlsson A, et al. 2018 ESC/EACTS Guidelines on myocardial revascularization[J]. Eur Heart J, 2019, 40(2): 87-165. doi: 10.1093/eurheartj/ehy394

    [4]

    《中国冠状动脉血流储备分数测定技术临床路径专家共识》专家组. 中国冠状动脉血流储备分数测定技术临床路径专家共识[J]. 中国介入心脏病学杂志, 2019, 27(3): 121-133. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJXB201903001.htm

    [5]

    Tu S, Westra J, Adjedj J, et al. Fractional flow reserve in clinical practice: from wire-based invasive measurement to image-based computation[J]. Eur Heart J, 2020, 41(34): 3271-3279. doi: 10.1093/eurheartj/ehz918

    [6]

    Escaned J, Berry C, De Bruyne B, et al. Applied coronary physiology for planning and guidance of percutaneous coronary interventions. A clinical consensus statement from the European Association of Percutaneous Cardiovascular Interventions(EAPCI)of the European Society of Cardiology[J]. Euro Intervention, 2023, 19(6): 464-481.

    [7]

    Tu S, Westra J, Yang J, et al. Diagnostic accuracy of fast computational approaches to derive fractional flow reserve from diagnostic coronary angiography: the international multicenter FAVOR Pilot Study[J]. JACC Cardiovasc Interv, 2016, 9(19): 2024-2035. doi: 10.1016/j.jcin.2016.07.013

    [8]

    Tu S, Barbato E, Koszegi Z, et al. Fractional flow reserve calculation from 3-dimensional quantitative coronary angiography and TIMI frame count: a fast computer model to quantify the functional significance of moderately obstructed coronary arteries[J]. JACC Cardiovasc Interv, 2014, 7(7): 768-777. doi: 10.1016/j.jcin.2014.03.004

    [9]

    Tu S, Ding D, Chang Y, et al. Diagnostic accuracy of quantitative flow ratio for assessment of coronary stenosis significance from a single angiographic view: A novel method based on bifurcation fractal law[J]. Catheter Cardiovasc Interv, 2021, 97 Suppl 2: 1040-1047.

    [10]

    Xu B, Tu S, Qiao S, et al. Diagnostic accuracy of angiography-based quantitative flow ratio measurements for online assessment of coronary stenosis[J]. J Am Coll Cardiol, 2017, 70(25): 3077-3087. doi: 10.1016/j.jacc.2017.10.035

    [11]

    Westra J, Andersen BK, Campo G, et al. Diagnostic performance of in-procedure angiography-derived quantitative flow reserve compared to pressure-derived fractional flow reserve: The FAVOR Ⅱ Europe-Japan Study[J]. J Am Heart Assoc, 2018, 7(14): 110.

    [12]

    Westra J, Tu S, Winther S, et al. Evaluation of coronary artery stenosis by quantitative flow ratio during invasive coronary angiography: The WIFI Ⅱ Study(Wire-Free Functional Imaging Ⅱ)[J]. Circ Cardiovasc Imaging, 2018, 11(3): e007107. doi: 10.1161/CIRCIMAGING.117.007107

    [13]

    Cortes C, Liu L, Berdin SL, et al. Agreement between Murray law-based quantitative flow ratio(muQFR)and three-dimensional quantitative flow ratio(3D-QFR)in non-selected angiographic stenosis: A multicenter study[J]. Cardiol J, 2022, 29(3): 388-395. doi: 10.5603/CJ.a2022.0030

    [14]

    Xu B, Tu S, Song L, et al. Angiographic quantitative flow ratio-guided coronary intervention(FAVOR Ⅲ China): a multicentre, randomised, sham-controlled trial[J]. Lancet, 2021, 398(10317): 2149-2159. doi: 10.1016/S0140-6736(21)02248-0

    [15]

    Song L, Xu B, Tu S, et al. 2-year outcomes of angiographic quantitative flow ratio-guided coronary interventions[J]. J Am Coll Cardiol, 2022, 80(22): 2089-2101. doi: 10.1016/j.jacc.2022.09.007

    [16]

    Guan S, Gan Q, Han W, et al. Feasibility of quantitative flow ratio virtual stenting for guidance of serial coronary lesions intervention[J]. J Am Heart Assoc, 2022, 11(19): e025663. doi: 10.1161/JAHA.122.025663

    [17]

    Rubimbura V, Guillon B, Fournier S, et al. Quantitative flow ratio virtual stenting and post stenting correlations to post stenting fractional flow reserve measurements from the DOCTORS(Does Optical Coherence Tomography Optimize Results of Stenting)study population[J]. Catheter Cardiovasc Interv, 2020, 96(6): 1145-1153. doi: 10.1002/ccd.28615

    [18]

    Biscaglia S, Verardi FM, Tebaldi M, et al. QFR-Based Virtual PCI or Conventional Angiography to Guide PCI: The AQVA Trial[J]. JACC Cardiovasc Interv, 2023, 16(7): 783-794. doi: 10.1016/j.jcin.2022.10.054

    [19]

    Yu W, Huang J, Jia D, et al. Diagnostic accuracy of intracoronary optical coherence tomography-derived fractional flow reserve for assessment of coronary stenosis severity[J]. Euro Intervention, 2019, 15(2): 189-197.

    [20]

    Yu W, Tanigaki T, Ding D, et al. Accuracy of intravascular ultrasound-based fractional flow reserve in identifying hemodynamic significance of coronary stenosis[J]. Circ Cardiovasc Interv, 2021, 14(2): e009840. doi: 10.1161/CIRCINTERVENTIONS.120.009840

    [21]

    Huang J, Emori H, Ding D, et al. Diagnostic performance of intracoronary optical coherence tomography-based versus angiography-based fractional flow reserve for the evaluation of coronary lesions[J]. Euro Intervention, 2020, 16(7): 568-576.

    [22]

    Gutierrez-Chico JL, Chen Y, Yu W, et al. Diagnostic accuracy and reproducibility of optical flow ratio for functional evaluation of coronary stenosis in a prospective series[J]. Cardiol J, 2020, 27(4): 350-361. doi: 10.5603/CJ.a2020.0071

    [23]

    Zeng X, Holck EN, Westra J, et al. Impact of coronary plaque morphology on the precision of computational fractional flow reserve derived from optical coherence tomography imaging[J]. Cardiovasc Diagn Ther, 2022, 12(2): 155-165. doi: 10.21037/cdt-21-505

    [24]

    Hu F, Ding D, Westra J, et al. Diagnostic accuracy of optical flow ratio: an individual patient-data meta-analysis[J]. Euro Intervention, 2023, 19(2): e145-e154.

    [25]

    Sui Y, Yang M, Xu Y, et al. Diagnostic performance of intravascular ultrasound-based fractional flow reserve versus angiography-based quantitative flow ratio measurements for evaluating left main coronary artery stenosis[J]. Catheter Cardiovasc Interv, 2022, 99 Suppl 1: 1403-1409.

    [26]

    Hong H, Jia H, Zeng M, et al. Risk stratification in acute coronary syndrome by comprehensive morphofunctional assessment with optical coherence tomography[J]. JACC Asia, 2022, 2(4): 460-472.

  • 加载中
计量
  • 文章访问数:  911
  • PDF下载数:  440
  • 施引文献:  0
出版历程
收稿日期:  2023-08-14
刊出日期:  2023-10-13

目录