AL型心肌淀粉样变致心力衰竭的机制探讨

胡嘉怡, 王奕, 董梅, 等. AL型心肌淀粉样变致心力衰竭的机制探讨[J]. 临床心血管病杂志, 2023, 39(10): 756-761. doi: 10.13201/j.issn.1001-1439.2023.10.005
引用本文: 胡嘉怡, 王奕, 董梅, 等. AL型心肌淀粉样变致心力衰竭的机制探讨[J]. 临床心血管病杂志, 2023, 39(10): 756-761. doi: 10.13201/j.issn.1001-1439.2023.10.005
HU Jiayi, WANG Yi, DONG Mei, et al. The mechanisms of heart failure caused by primary amyloid light chain cardiac amyloidosis[J]. J Clin Cardiol, 2023, 39(10): 756-761. doi: 10.13201/j.issn.1001-1439.2023.10.005
Citation: HU Jiayi, WANG Yi, DONG Mei, et al. The mechanisms of heart failure caused by primary amyloid light chain cardiac amyloidosis[J]. J Clin Cardiol, 2023, 39(10): 756-761. doi: 10.13201/j.issn.1001-1439.2023.10.005

AL型心肌淀粉样变致心力衰竭的机制探讨

  • 基金项目:
    十四五国家重点研发项目(No:2021YFF0501404);国家自然科学基金面上项目(No:82170463)
详细信息

The mechanisms of heart failure caused by primary amyloid light chain cardiac amyloidosis

More Information
  • 免疫球蛋白轻链型(AL型)心肌淀粉样变,是由骨髓中浆细胞分泌克隆性免疫球蛋白轻链在心肌间质等部位聚集,引发的以心力衰竭(心衰)、心律失常和心肌缺血为主要表现的一种疾病。心衰是AL型心肌淀粉样变终末期表现,但目前AL型心肌淀粉样变导致心衰的机制尚未被完全阐明。本文重点探讨了目前已知的AL型心肌淀粉样变导致心衰的机制,主要包括淀粉样原纤维的占位效应和毒性作用、游离轻链的毒性作用、冠脉微血管损伤、细胞外基质稳态破坏、传导系统损伤,旨在为未来进一步的机制研究和临床治疗探索提供参考。
  • 加载中
  • [1]

    Sher T, Gertz MA. Recent advances in the diagnosis and management of cardiac amyloidosis[J]. Future Cardiol, 2014, 10(1): 131-146. doi: 10.2217/fca.13.85

    [2]

    朱家良. AL型心肌淀粉样变的诊疗进展[J]. 中国医药导报, 2019, 16(12): 50-53, 57. https://www.cnki.com.cn/Article/CJFDTOTAL-YYCY201912013.htm

    [3]

    Martinez-Naharro A, Hawkins PN, Fontana M. Cardiac amyloidosis[J]. Clin Med(Lond), 2018, 18(Suppl 2): s30-s35.

    [4]

    Bhat A, Selmi C, Naguwa SM, et al. Currents concepts on the immunopathology of amyloidosis[J]. Clin Rev Allergy Immunol, 2010, 38(2-3): 97-106. doi: 10.1007/s12016-009-8163-9

    [5]

    徐素容, 陈霄. 系统性淀粉样变累及心肌1例[J]. 临床心血管病杂志, 2017, 33(12): 1234-1236. doi: 10.13201/j.issn.1001-1439.2017.12.023

    [6]

    Saito Y, Nakamura K, Ito H. Molecular Mechanisms of Cardiac Amyloidosis[J]. Int J Mol Sci, 2021, 23(1): 110. doi: 10.3390/ijms23010110

    [7]

    Sabinot A, Ghetti G, Pradelli L, et al. State-of-the-art review on AL amyloidosis in Western Countries: Epidemiology, health economics, risk assessment and therapeutic management of a rare disease[J]. Blood Rev, 2023, 59: 101040. doi: 10.1016/j.blre.2023.101040

    [8]

    Wu Z, Li M, Ilyas T, et al. A real-world study on diagnosis and prognosis of light-chain cardiac amyloidosis in Southern China[J]. BMC Cardiovasc Disord, 2021, 21(1): 452. doi: 10.1186/s12872-021-02256-3

    [9]

    Rubin J, Maurer MS. Cardiac amyloidosis: overlooked, underappreciated, and treatable[J]. Annu Rev Med, 2020, 71: 203-219. doi: 10.1146/annurev-med-052918-020140

    [10]

    Hasib Sidiqi M, Gertz MA. Immunoglobulin light chain amyloidosis diagnosis and treatment algorithm 2021[J]. Blood Cancer J, 2021, 11(5): 90. doi: 10.1038/s41408-021-00483-7

    [11]

    Mankad AK, Sesay I, Shah KB. Light-chain cardiac amyloidosis[J]. Curr Probl Cancer, 2017, 41(2): 144-156. doi: 10.1016/j.currproblcancer.2016.11.004

    [12]

    Fontana M, Banypersad SM, Treibel TA, et al. Differential myocyte responses in patients with cardiac transthyretin amyloidosis and light-chain amyloidosis: A Cardiac MR Imaging Study[J]. Radiology, 2015, 277(2): 388-397. doi: 10.1148/radiol.2015141744

    [13]

    Fontana M, Ćorović A, Scully P, et al. Myocardial Amyloidosis: The Exemplar Interstitial Disease[J]. JACC Cardiovasc Imaging, 2019, 12(11 Pt 2): 2345-2356.

    [14]

    McWilliams-Koeppen HP, Foster JS, Hackenbrack N, et al. Light chain amyloid fibrils cause metabolic dysfunction in human cardiomyocytes[J]. PLoS One, 2015, 10(9): e0137716. doi: 10.1371/journal.pone.0137716

    [15]

    Marin-Argany M, Lin Y, Misra P, et al. Cell Damage in light chain amyloidosis: fibril internalization, toxicity and cell-mediated seeding[J]. J Biol Chem, 2016, 291(38): 19813-19825. doi: 10.1074/jbc.M116.736736

    [16]

    Xue WF, Hellewell AL, Gosal WS, et al. Fibril fragmentation enhances amyloid cytotoxicity[J]. J Biol Chem, 2009, 284(49): 34272-34282. doi: 10.1074/jbc.M109.049809

    [17]

    Xue WF, Hellewell AL, Hewitt EW, et al. Fibril fragmentation in amyloid assembly and cytotoxicity: when size matters[J]. Prion, 2010, 4(1): 20-25. doi: 10.4161/pri.4.1.11378

    [18]

    Lee YJ, Savtchenko R, Ostapchenko VG, et al. Molecular structure of amyloid fibrils controls the relationship between fibrillar size and toxicity[J]. PLoS One, 2011, 6(5): e20244. doi: 10.1371/journal.pone.0020244

    [19]

    Jordan TL, Maar K, Redhage KR, et al. Light chain amyloidosis induced inflammatory changes in cardiomyocytes and adipose-derived mesenchymal stromal cells[J]. Leukemia, 2020, 34(5): 1383-1393. doi: 10.1038/s41375-019-0640-4

    [20]

    Kotecha T, Martinez-Naharro A, Treibel TA, et al. Myocardial edema and prognosis in amyloidosis[J]. J Am Coll Cardiol, 2018, 71(25): 2919-2931. doi: 10.1016/j.jacc.2018.03.536

    [21]

    Kazman P, Absmeier RM, Engelhardt H, et al. Dissection of the amyloid formation pathway in AL amyloidosis[J]. Nat Commun, 2021, 12(1): 6516. doi: 10.1038/s41467-021-26845-0

    [22]

    Kazman P, Vielberg MT, Pulido Cendales MD, et al. Fatal amyloid formation in a patient's antibody light chain is caused by a single point mutation[J]. Elife, 2020, 9: 110.

    [23]

    Dispenzieri A, Lacy MQ, Katzmann JA, et al. Absolute values of immunoglobulin free light chains are prognostic in patients with primary systemic amyloidosis undergoing peripheral blood stem cell transplantation[J]. Blood, 2006, 107(8): 3378-3383. doi: 10.1182/blood-2005-07-2922

    [24]

    Liao R, Jain M, Teller P, et al. Infusion of light chains from patients with cardiac amyloidosis causes diastolic dysfunction in isolated mouse hearts[J]. Circulation, 2001, 104(14): 1594-1597. doi: 10.1161/circ.104.14.1594

    [25]

    Brenner DA, Jain M, Pimentel DR, et al. Human amyloidogenic light chains directly impair cardiomyocyte function through an increase in cellular oxidant stress[J]. Circ Res, 2004, 94(8): 1008-1010. doi: 10.1161/01.RES.0000126569.75419.74

    [26]

    Palladini G, Lavatelli F, Russo P, et al. Circulating amyloidogenic free light chains and serum N-terminal natriuretic peptide type B decrease simultaneously in association with improvement of survival in AL[J]. Blood, 2006, 107(10): 3854-3858. doi: 10.1182/blood-2005-11-4385

    [27]

    Zhou B, Tian R. Mitochondrial dysfunction in pathophysiology of heart failure[J]. J Clin Investi, 2018, 128(9): 3716-3726. doi: 10.1172/JCI120849

    [28]

    Kumar AA, Kelly DP, Chirinos JA. Mitochondrial dysfunction in heart failure with preserved ejection fraction[J]. Circulation, 2019, 139(11): 1435-1450. doi: 10.1161/CIRCULATIONAHA.118.036259

    [29]

    Lavatelli F, Imperlini E, Orrù S, et al. Novel mitochondrial protein interactors of immunoglobulin light chains causing heart amyloidosis[J]. FASEB J, 2015, 29(11): 4614-4628. doi: 10.1096/fj.15-272179

    [30]

    Guan J, Mishra S, Qiu Y, et al. Lysosomal dysfunction and impaired autophagy underlie the pathogenesis of amyloidogenic light chain-mediated cardiotoxicity[J]. EMBO Mol Med, 2014, 6(11): 1493-1507. doi: 10.15252/emmm.201404190

    [31]

    Mishra S, Guan J, Plovie E, et al. Human amyloidogenic light chain proteins result in cardiac dysfunction, cell death, and early mortality in zebrafish[J]. Am J Physiol Heart Circ Physiol, 2013, 305(1): H95-103. doi: 10.1152/ajpheart.00186.2013

    [32]

    D'Errico S, Mazzanti A, Baldari B, et al. Sudden death in lambda light chain AL cardiac amyloidosis: a review of literature and update for clinicians and pathologists[J]. Int J Clin Exp Pathol, 2020, 13(7): 1474-1482.

    [33]

    Tsutsui H, Kinugawa S, Matsushima S. Oxidative stress and heart failure[J]. Am J Physiol Heart Circ Physiol, 2011, 301(6): H2181-2190. doi: 10.1152/ajpheart.00554.2011

    [34]

    Tsutsui H, Ide T, Kinugawa S. Mitochondrial oxidative stress, DNA damage, and heart failure[J]. Antioxid Redox Signal, 2006, 8(9-10): 1737-1744. doi: 10.1089/ars.2006.8.1737

    [35]

    Takimoto E, Kass DA. Role of oxidative stress in cardiac hypertrophy and remodeling[J]. Hypertension, 2007, 49(2): 241-248. doi: 10.1161/01.HYP.0000254415.31362.a7

    [36]

    Diomede L, Romeo M, Rognoni P, et al. Cardiac light chain amyloidosis: the role of metal ions in oxidative stress and mitochondrial damage[J]. Antioxid Redox Signal, 2017, 27(9): 567-582. doi: 10.1089/ars.2016.6848

    [37]

    Shi J, Guan J, Jiang B, et al. Amyloidogenic light chains induce cardiomyocyte contractile dysfunction and apoptosis via a non-canonical p38alpha MAPK pathway[J]. Proc Natl Acad Sci U S A, 2010, 107(9): 4188-4193. doi: 10.1073/pnas.0912263107

    [38]

    Guan J, Mishra S, Shi J, et al. Stanniocalcin1 is a key mediator of amyloidogenic light chain induced cardiotoxicity[J]. Basic Res Cardiol, 2013, 108(5): 378. doi: 10.1007/s00395-013-0378-5

    [39]

    Nguyen A, Chang AC, Reddel RR. Stanniocalcin-1 acts in a negative feedback loop in the prosurvival ERK1/2 signaling pathway during oxidative stress[J]. Oncogene, 2009, 28(18): 1982-1992. doi: 10.1038/onc.2009.65

    [40]

    Sheikh-Hamad D, Bick R, Wu GY, et al. Stanniocalcin-1 is a naturally occurring L-channel inhibitor in cardiomyocytes: relevance to human heart failure[J]. Am J Physiol Heart Circ Physiol, 2003, 285(1): H442-448. doi: 10.1152/ajpheart.01071.2002

    [41]

    Wang Y, Huang L, Abdelrahim M, et al. Stanniocalcin-1 suppresses superoxide generation in macrophages through induction of mitochondrial UCP2[J]. J Leukoc Biol, 2009, 86(4): 981-988. doi: 10.1189/jlb.0708454

    [42]

    Koizumi K, Hoshiai M, Ishida H, et al. Stanniocalcin 1 prevents cytosolic Ca2+ overload and cell hypercontracture in cardiomyocytes[J]. Circ J, 2007, 71(5): 796-801. doi: 10.1253/circj.71.796

    [43]

    van Empel VP, Bertrand AT, Hofstra L, et al. Myocyte apoptosis in heart failure[J]. Cardiovasc Res, 2005, 67(1): 21-29. doi: 10.1016/j.cardiores.2005.04.012

    [44]

    Wencker D, Chandra M, Nguyen K, et al. A mechanistic role for cardiac myocyte apoptosis in heart failure[J]. J Clin Invest, 2003, 111(10): 1497-1504. doi: 10.1172/JCI17664

    [45]

    Mueller PS, Edwards WD, Gertz MA. Symptomatic ischemic heart disease resulting from obstructive intramural coronary amyloidosis[J]. Am J Med, 2000, 109(3): 181-188. doi: 10.1016/S0002-9343(00)00471-X

    [46]

    Al Suwaidi J, Velianou JL, Gertz MA, et al. Systemic amyloidosis presenting with angina pectoris[J]. Ann Intern Med, 1999, 131(11): 838-841.

    [47]

    Hongo M, Yamamoto H, Kohda T, et al. Comparison of electrocardiographic findings in patients with AL(primary)amyloidosis and in familial amyloid polyneuropathy and anginal pain and their relation to histopathologic findings[J]. Am J Cardiol, 2000, 85(7): 849-853. doi: 10.1016/S0002-9149(99)00879-6

    [48]

    Neben-Wittich MA, Wittich CM, Mueller PS, et al. Obstructive intramural coronary amyloidosis and myocardial ischemia are common in primary amyloidosis[J]. Am J Med, 2005, 118(11): 1287.

    [49]

    Crotty TB, Li CY, Edwards WD, et al. Amyloidosis and endomyocardial biopsy: Correlation of extent and pattern of deposition with amyloid immunophenotype in 100 cases[J]. Cardiovasc Pathol, 1995, 4(1): 39-42. doi: 10.1016/1054-8807(94)00023-K

    [50]

    Dorbala S, Vangala D, Bruyere J Jr, et al. Coronary microvascular dysfunction is related to abnormalities in myocardial structure and function in cardiac amyloidosis[J]. JACC Heart Fail, 2014, 2(4): 358-367. doi: 10.1016/j.jchf.2014.03.009

    [51]

    Kim D, Choi JO, Kim K, et al. Clinical and prognostic implications of capillary density in patients with cardiac light chain amyloidosis[J]. ESC Heart Fail, 2021, 8(6): 5594-5599. doi: 10.1002/ehf2.13604

    [52]

    方位, 颜超, 林艳, 等. 19例心肌淀粉样变性患者的临床特点及预后分析[J]. 临床心血管病杂志, 2017, 33(2): 115-118. https://lcxxg.whuhzzs.com/article/doi/10.13201/j.issn.1001-1439.2017.02.004

    [53]

    Brower GL, Gardner JD, Forman MF, et al. The relationship between myocardial extracellular matrix remodeling and ventricular function[J]. Eur J Cardiothorac Surg, 2006, 30(4): 604-610. doi: 10.1016/j.ejcts.2006.07.006

    [54]

    Ahmed SH, Clark LL, Pennington WR, et al. Matrix metalloproteinases/tissue inhibitors of metalloproteinases: relationship between changes in proteolytic determinants of matrix composition and structural, functional, and clinical manifestations of hypertensive heart disease[J]. Circulation, 2006, 113(17): 2089-2096. doi: 10.1161/CIRCULATIONAHA.105.573865

    [55]

    Biolo A, Ramamurthy S, Connors LH, et al. Matrix metalloproteinases and their tissue inhibitors in cardiac amyloidosis: relationship to structural, functional myocardial changes and to light chain amyloid deposition[J]. Circ Heart Fail, 2008, 1(4): 249-257. doi: 10.1161/CIRCHEARTFAILURE.108.788687

    [56]

    Tanaka K, Essick EE, Doros G, et al. Circulating matrix metalloproteinases and tissue inhibitors of metalloproteinases in cardiac amyloidosis[J]. J Am Heart Assoc, 2013, 2(2): e005868. doi: 10.1161/JAHA.112.005868

    [57]

    Sayed RH, Rogers D, Khan F, et al. A study of implanted cardiac rhythm recorders in advanced cardiac AL amyloidosis[J]. Eur Heart J, 2015, 36(18): 1098-1105. doi: 10.1093/eurheartj/ehu506

    [58]

    Ridolfi RL, Bulkley BH, Hutchins GM. The conduction system in cardiac amyloidosis. Clinical and pathologic features of 23 patients[J]. Am J Med, 1977, 62(5): 677-686. doi: 10.1016/0002-9343(77)90870-1

    [59]

    James TN. Pathology of the cardiac conduction system in amyloidosis[J]. Ann Intern Med, 1966, 65(1): 28-36. doi: 10.7326/0003-4819-65-1-28

    [60]

    Machraa A, Ben Brahim W, Sidaty O, et al. Sustained ventricular arrhythmia and sinus node dysfunction revealing a cardiac amyloidosis: A case report[J]. Ann Med Surg(Lond), 2022, 84: 104888.

    [61]

    Ashraf I, Peck MM, Maram R, et al. Association of arrhythmias in cardiac amyloidosis and cardiac sarcoidosis[J]. Cureus, 2020, 12(8): e9842.

    [62]

    Papathanasiou M, Jakstaite AM, Oubari S, et al. Clinical features and predictors of atrial fibrillation in patients with light-chain or transthyretin cardiac amyloidosis[J]. ESC Heart Fail, 2022, 9(3): 1740-1748. doi: 10.1002/ehf2.13851

    [63]

    Bukhari S, Oliveros E, Parekh H, et al. Epidemiology, mechanisms, and management of atrial fibrillation in cardiac amyloidosis[J]. Curr Probl Cardiol, 2023, 48(4): 101571. doi: 10.1016/j.cpcardiol.2022.101571

    [64]

    Jakait R, Pe eliūnas V, Aidietien S, et al. Electrocardiographic left ventricular strain pattern, ST-segment depression and atrial fibrillation at the time of diagnosis of systemic light chain amyloidosis: Incidence and clinical significance[J]. J Electrocardiol, 2021, 68: 157-163. doi: 10.1016/j.jelectrocard.2021.08.011

    [65]

    Garcia-Pavia P, Rapezzi C, Adler Y, et al. Diagnosis and treatment of cardiac amyloidosis: a position statement of the ESC Working Group on Myocardial and Pericardial Diseases[J]. Euro Heart J, 2021, 42(16): 1554-1568. doi: 10.1093/eurheartj/ehab072

    [66]

    程仙, 张刘燕, 许菲, 等. 原发型心肌淀粉样变的治疗进展[J]. 临床心血管病杂志, 2017, 33(5): 407-410. https://lcxxg.whuhzzs.com/article/doi/10.13201/j.issn.1001-1439.2017.05.003

    [67]

    Kastritis E, Palladini G, Minnema MC, et al. Daratumumab-based treatment for immunoglobulin light-chain amyloidosis[J]. N Engl J Med, 2021, 385(1): 46-58. doi: 10.1056/NEJMoa2028631

  • 加载中
计量
  • 文章访问数:  1311
  • PDF下载数:  264
  • 施引文献:  0
出版历程
收稿日期:  2022-11-14
刊出日期:  2023-10-13

目录