RNA结合基序蛋白20相关心肌病的研究进展

孙肖云, 申阳, 洪葵. RNA结合基序蛋白20相关心肌病的研究进展[J]. 临床心血管病杂志, 2023, 39(10): 761-767. doi: 10.13201/j.issn.1001-1439.2023.10.006
引用本文: 孙肖云, 申阳, 洪葵. RNA结合基序蛋白20相关心肌病的研究进展[J]. 临床心血管病杂志, 2023, 39(10): 761-767. doi: 10.13201/j.issn.1001-1439.2023.10.006
SUN Xiaoyun, SHEN Yang, HONG Kui. The progress of RBM20 related cardiomyopathy[J]. J Clin Cardiol, 2023, 39(10): 761-767. doi: 10.13201/j.issn.1001-1439.2023.10.006
Citation: SUN Xiaoyun, SHEN Yang, HONG Kui. The progress of RBM20 related cardiomyopathy[J]. J Clin Cardiol, 2023, 39(10): 761-767. doi: 10.13201/j.issn.1001-1439.2023.10.006

RNA结合基序蛋白20相关心肌病的研究进展

  • 基金项目:
    国家自然科学基金项目(No:31860320);江西省青年科学基金项目(No:20181BAB215030)
详细信息

The progress of RBM20 related cardiomyopathy

More Information
  • 扩张型心肌病(DCM)是临床常见的原发性心肌病之一,是造成心脏性猝死的重要原因,至今已报道51个相关致病基因。不同基因导致的DCM亚型具有特异性临床特征与遗传异质性。其中RNA结合基序蛋白20(RNA-binding motif protein 20,RBM20)编码心肌特异性mRNA剪接调节因子,是DCM明确致病基因之一。RBM20基因相关DCM具有遗传外显率高、发病年龄早、心脏猝死率高等严重临床表现。其独特的致病分子机制也显示出其作为心力衰竭潜在治疗靶点的可能性。本文将对RBM20相关DCM的发病机理、分子遗传学、临床特征与治疗进行进展性综述,对于DCM亚型的研究强调了基因检测在心血管精准医疗中的重要性。
  • 加载中
  • 图 1  RBM20基因与蛋白的结构示意图

    Figure 1.  Structure diagram of RBM20 gene and protein

    表 1  已报道的DCM相关RBM20变异

    Table 1.  Reported RBM20 variants associated DCM

    序号 转录本 cDNA改变 氨基酸改变 外显子 蛋白功能域 ACMG
    变异解读
    ACMG
    评分
    参考
    文献
    1 NM_001134363.1 c.247C>A p.L83I 2 富亮氨酸结构域 致病意义不明变异 2 [25]
    2 NM_001134363.1 c.1364C>T p.S455L 4 - 良性变异 -8 [25]
    3 NM_001134363.3 c.1603G>A p.V535I 6 RRM 致病意义不明变异 0 [13, 21]
    4 NM_001134363.3 c.1607T>C p.I536T 6 RRM 致病意义不明变异 2 [31]
    5 NM_001134363.3 c.1898C>T p.P633L 9 RS结构域 致病意义不明变异 2 [45-46]
    6 NM_001134363.1 c.1901G>A p.R634Q 9 RS结构域 致病变异 13 [4, 8, 21, 47]
    7 NM_001134363.3 c.1900C>T p.R634W 9 RS结构域 致病变异 14 [3, 48-50]
    8 NM_001134363.3 c.1903T>G p.S635A 9 RS结构域 可能致病变异 8 [13]
    9 NM_001134363.3 c.1906C>T p.R636C 9 RS结构域 可能致病变异 8 [21, 51]
    10 NM_001134363.3 c.1907G>A p.R636H 9 RS结构域 致病变异 12 [4, 21, 51-53]
    11 NM_001134363.1 c.1906C>A p.R636S 9 RS结构域 致病变异 15 [4, 13, 54]
    12 NM_001134363.1 c.1909A>G p.S637G 9 RS结构域 可能致病变异 8 [4, 55-56]
    13 NM_001134363.3 c.1913C>T p.P638L 9 RS结构域 致病变异 14 [4, 8, 57-60]
    14 NM_001134363.1 c.2109G>T p.R703S 9 - 致病意义不明变异 1 [25]
    15 NM_001134363.3 c.2147G>A p.R716Q 9 - 致病意义不明变异 1 [21, 53, 59, 61]
    16 NM_001134363.3 c.2347A>G p.R783G 9 - 致病意义不明变异 1 [17]
    17 NM_001134363.1 c.2662G>A p.D888N 11 富谷氨酸结构域 良性变异 -8 [25, 53]
    18 NM_001134363.3 c.2737G>A p.E913K 11 富谷氨酸结构域 致病变异 10 [8, 47, 57, 62]
    19 NM_001134363.3 c.2741T>C p.V914A 11 富谷氨酸结构域 致病意义不明变异 2 [18]
    20 NM_001134363.1 c.3091G>T p.G1031* 11 - 致病变异 10 [3, 25]
    21 NM_001134363.1 c.3242C>G p.P1081R 11 - 致病意义不明变异 0 [25]
    22 NM_001134363.1 c.3545G>A p.R1182H 13 ZnF-2 可能良性变异 -4 [25]
    23 NM_001134363.1 c.3616G>A p.E1206K 14 ZnF-2 致病意义不明变异 0 [25]
    RRM:RNA识别基序结构域;RS结构域:富含丝氨酸和精氨酸结构域;ZnF-2:第2个锌指结构域。
    下载: 导出CSV
  • [1]

    Haas J, Frese KS, Peil B, et al. Atlas of the clinical genetics of human dilated cardiomyopathy[J]. Eur Heart J, 2015, 36(18): 1123-1135a. doi: 10.1093/eurheartj/ehu301

    [2]

    Section of Precision Cardiovascular Medicine of Chinese Society of Cardiology, Precision Cardiovascular Medicine Branch of China International Exchange, Promotive Association for Medical. Guideline for the genetic diagnosis of monogenic cardiovascular diseases[J]. Zhonghua Xin Xue Guan Bing Za Zhi, 2019, 47(3): 175-196.

    [3]

    Murayama R, Kimura-Asami M, Togo-Ohno M, et al. Phosphorylation of the RSRSP stretch is critical for splicing regulation by RNA-Binding Motif Protein 20(RBM20) through nuclear localization[J]. Sci Rep, 2018, 8(1): 8970. doi: 10.1038/s41598-018-26624-w

    [4]

    Brauch KM, Karst ML, Herron KJ, et al. Mutations in ribonucleic acid binding protein gene cause familial dilated cardiomyopathy[J]. J Am Coll Cardiol, 2009, 54(10): 930-941. doi: 10.1016/j.jacc.2009.05.038

    [5]

    Watanabe T, Kimura A, Kuroyanagi H. Alternative Splicing Regulator RBM20 and Cardiomyopathy[J]. Front Mol Biosci, 2018, 5: 105. doi: 10.3389/fmolb.2018.00105

    [6]

    Guo W, Sun M. RBM20, a potential target for treatment of cardiomyopathy via titin isoform switching[J]. Biophys Rev, 2018, 10(1): 15-25. doi: 10.1007/s12551-017-0267-5

    [7]

    Zahr HC, Jaalouk DE. Exploring the Crosstalk Between LMNA and Splicing Machinery Gene Mutations in Dilated Cardiomyopathy[J]. Front Genet, 2018, 9: 231. doi: 10.3389/fgene.2018.00231

    [8]

    Hey TM, Rasmussen TB, Madsen T, et al. Pathogenic RBM20-Variants Are Associated With a Severe Disease Expression in Male Patients With Dilated Cardiomyopathy[J]. Circ Heart Fail, 2019, 12(3): e005700. doi: 10.1161/CIRCHEARTFAILURE.118.005700

    [9]

    Beqqali A, Bollen IA, Rasmussen TB, et al. A mutation in the glutamate-rich region of RNA-binding motif protein 20 causes dilated cardiomyopathy through missplicing of titin and impaired Frank-Starling mechanism[J]. Cardiovasc Res, 2016, 112(1): 452-463. doi: 10.1093/cvr/cvw192

    [10]

    van den Hoogenhof M, Beqqali A, Amin AS, et al. RBM20 Mutations Induce an Arrhythmogenic Dilated Cardiomyopathy Related to Disturbed Calcium Handling[J]. Circulation, 2018, 138(13): 1330-1342. doi: 10.1161/CIRCULATIONAHA.117.031947

    [11]

    Chauveau C, Rowell J, Ferreiro A. A rising titan: TTN review and mutation update[J]. Hum Mutat, 2014, 35(9): 1046-1059. doi: 10.1002/humu.22611

    [12]

    Maatz H, Jens M, Liss M, et al. RNA-binding protein RBM20 represses splicing to orchestrate cardiac pre-mRNA processing[J]. J Clin Invest, 2014, 124(8): 3419-3430. doi: 10.1172/JCI74523

    [13]

    Guo W, Schafer S, Greaser ML, et al. RBM20, a gene for hereditary cardiomyopathy, regulates titin splicing[J]. Nat Med, 2012, 18(5): 766-773. doi: 10.1038/nm.2693

    [14]

    Sedaghat-Hamedani F, Haas J, Zhu F, et al. Clinical genetics and outcome of left ventricular non-compaction cardiomyopathy[J]. Eur Heart J, 2017, 38(46): 3449-3460. doi: 10.1093/eurheartj/ehx545

    [15]

    Deo RC. Alternative Splicing, Internal Promoter, Nonsense-Mediated Decay, or All Three: Explaining the Distribution of Truncation Variants in Titin[J]. Circ Cardiovasc Genet, 2016, 9(5): 419-425. doi: 10.1161/CIRCGENETICS.116.001513

    [16]

    Li N, Hang W, Shu H, et al. RBM20, a Therapeutic Target to Alleviate Myocardial Stiffness via Titin Isoforms Switching in HFpEF[J]. Front Cardiovasc Med, 2022, 9: 928244. doi: 10.3389/fcvm.2022.928244

    [17]

    Vakhrushev Y, Kozyreva A, Semenov A, et al. RBM20-Associated Ventricular Arrhythmias in a Patient with Structurally Normal Heart[J]. Genes(Basel), 2021, 12(1): 110.

    [18]

    Gaertner A, Klauke B, Felski E, et al. Cardiomyopathy-associated mutations in the RS domain affect nuclear localization of RBM20[J]. Hum Mutat, 2020, 41(11): 1931-1943. doi: 10.1002/humu.24096

    [19]

    Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology[J]. Genet Med, 2015, 17(5): 405-424. doi: 10.1038/gim.2015.30

    [20]

    Tavtigian SV, Harrison SM, Boucher KM, et al. Fitting a naturally scaled point system to the ACMG/AMP variant classification guidelines[J]. Hum Mutat, 2020, 41(10): 1734-1737. doi: 10.1002/humu.24088

    [21]

    Li D, Morales A, Gonzalez-Quintana J, et al. Identification of novel mutations in RBM20 in patients with dilated cardiomyopathy[J]. Clin Transl Sci, 2010, 3(3): 90-97. doi: 10.1111/j.1752-8062.2010.00198.x

    [22]

    Filippello A, Lorenzi P, Bergamo E, et al. Identification of nuclear retention domains in the RBM20 protein[J]. FEBS Lett, 2013, 587(18): 2989-2995. doi: 10.1016/j.febslet.2013.07.018

    [23]

    Parikh VN, Caleshu C, Reuter C, et al. Regional Variation in RBM20 Causes a Highly Penetrant Arrhythmogenic Cardiomyopathy[J]. Circ Heart Fail, 2019, 12(3): e005371. doi: 10.1161/CIRCHEARTFAILURE.118.005371

    [24]

    Methawasin M, Hutchinson KR, Lee EJ, et al. Experimentally increasing titin compliance in a novel mouse model attenuates the Frank-Starling mechanism but has a beneficial effect on diastole[J]. Circulation, 2014, 129(19): 1924-1936. doi: 10.1161/CIRCULATIONAHA.113.005610

    [25]

    Refaat MM, Lubitz SA, Makino S, et al. Genetic variation in the alternative splicing regulator RBM20 is associated with dilated cardiomyopathy[J]. Heart Rhythm, 2012, 9(3): 390-396. doi: 10.1016/j.hrthm.2011.10.016

    [26]

    Schneider JW, Oommen S, Qureshi MY, et al. Dysregulated ribonucleoprotein granules promote cardiomyopathy in RBM20 gene-edited pigs[J]. Nat Med, 2020, 26(11): 1788-1800. doi: 10.1038/s41591-020-1087-x

    [27]

    Wang C, Zhang Y, Methawasin M, et al. RBM20S639G mutation is a high genetic risk factor for premature death through RNA-protein condensates[J]. J Mol Cell Cardiol, 2022, 165: 115-129. doi: 10.1016/j.yjmcc.2022.01.004

    [28]

    Kayvanpour E, Sedaghat-Hamedani F, Amr A, et al. Genotype-phenotype associations in dilated cardiomyopathy: meta-analysis on more than 8000 individuals[J]. Clin Res Cardiol, 2017, 106(2): 127-139. doi: 10.1007/s00392-016-1033-6

    [29]

    Guo J, Liu W, Peng Z, et al. Integrated scheduling of distributed production and distribution in group manufacturing with uncertain travel time[J]. Complex Intell Systems, 2023, 9(2): 1871-1889. doi: 10.1007/s40747-022-00875-7

    [30]

    Das S, Seth S. Familial dilated cardiomyopathy with RBM20 mutation in an Indian patient: a case report[J]. Egypt Heart J, 2021, 73(1): 47. doi: 10.1186/s43044-021-00165-6

    [31]

    Yamamoto T, Sano R, Miura A, et al. I536T variant of RBM20 affects splicing of cardiac structural proteins that are causative for developing dilated cardiomyopathy[J]. J Mol Med(Berl), 2022, 100(12): 1741-1754.

    [32]

    Ihara K, Sasano T, Hiraoka Y, et al. A missense mutation in the RSRSP stretch of Rbm20 causes dilated cardiomyopathy and atrial fibrillation in mice[J]. Sci Rep, 2020, 10(1): 17894. doi: 10.1038/s41598-020-74800-8

    [33]

    Heidenreich PA, Bozkurt B, Aguilar D, et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines[J]. JACC, 2022, 79(17): e263-e421. doi: 10.1016/j.jacc.2021.12.012

    [34]

    中华医学会心血管病学分会心力衰竭学组, 中国医师协会心力衰竭专业委员会, 中华心血管病杂志编辑委员会. 中国心力衰竭诊断和治疗指南2018[J]. 中华心血管病杂志, 2018, 46(10): 760-789 AB.

    [35]

    中华医学会心血管病学分会, 中国心肌炎心肌病协作组. 中国扩张型心肌病诊断和治疗指南[J]. 临床心血管病杂志, 2018, 34(5): 421-434. doi: 10.13201/j.issn.1001-1439.2018.05.002

    [36]

    张班, 刘晓刚, 胡利群. 射血分数保留的心力衰竭研究新进展[J]. 临床心血管病杂志, 2022, 38(4): 271-275. doi: 10.13201/j.issn.1001-1439.2022.04.004

    [37]

    Seferović PM, Polovina M, Bauersachs J, et al. Heart failure in cardiomyopathies: a position paper from the Heart Failure Association of the European Society of Cardiology[J]. Euro J Heart Fail, 2019, 21(5): 553-576. doi: 10.1002/ejhf.1461

    [38]

    Methawasin M, Strom JG, Slater RE, et al. Experimentally Increasing the Compliance of Titin Through RNA Binding Motif-20(RBM20) Inhibition Improves Diastolic Function In a Mouse Model of Heart Failure With Preserved Ejection Fraction[J]. Circulation, 2016, 134(15): 1085-1099. doi: 10.1161/CIRCULATIONAHA.116.023003

    [39]

    Hinze F, Dieterich C, Radke MH, et al. Reducing RBM20 activity improves diastolic dysfunction and cardiac atrophy[J]. J Mol Med(Berl), 2016, 94(12): 1349-1358.

    [40]

    Bull M, Methawasin M, Strom J, et al. Alternative Splicing of Titin Restores Diastolic Function in an HFpEF-Like Genetic Murine Model(TtnΔIAjxn)[J]. Circ Res, 2016, 119(6): 764-772. doi: 10.1161/CIRCRESAHA.116.308904

    [41]

    Radke MH, Badillo-Lisakowski V, Britto-Borges T, et al. Therapeutic inhibition of RBM20 improves diastolic function in a murine heart failure model and human engineered heart tissue[J]. Sci Transl Med, 2021, 13(622): eabe8952. doi: 10.1126/scitranslmed.abe8952

    [42]

    Rebs S, Sedaghat-Hamedani F, Kayvanpour E, et al. Generation of pluripotent stem cell lines and CRISPR/Cas9 modified isogenic controls from a patient with dilated cardiomyopathy harboring a RBM20 p. R634W mutation[J]. Stem Cell Res, 2020, 47: 101901. doi: 10.1016/j.scr.2020.101901

    [43]

    Nishiyama T, Zhang Y, Cui M, et al. Precise genomic editing of pathogenic mutations in RBM20 rescues dilated cardiomyopathy[J]. Sci Transl Med, 2022, 14(672): eade1633. doi: 10.1126/scitranslmed.ade1633

    [44]

    Fenix AM, Miyaoka Y, Bertero A, et al. Gain-of-function cardiomyopathic mutations in RBM20 rewire splicing regulation and re-distribute ribonucleoprotein granules within processing bodies[J]. Nat Commun, 2021, 12(1): 6324. doi: 10.1038/s41467-021-26623-y

    [45]

    Zhu C, Wu J, Sun H, et al. Single-molecule, full-length transcript isoform sequencing reveals disease-associated RNA isoforms in cardiomyocytes[J]. Nat Commun, 2021, 12(1): 4203. doi: 10.1038/s41467-021-24484-z

    [46]

    Briganti F, Sun H, Wei W, et al. iPSC Modeling of RBM20-Deficient DCM Identifies Upregulation of RBM20 as a Therapeutic Strategy[J]. Cell Rep, 2020, 32(10): 108117. doi: 10.1016/j.celrep.2020.108117

    [47]

    Hey TM, Rasmussen TB, Madsen T, et al. Clinical and Genetic Investigations of 109 Index Patients With Dilated Cardiomyopathy and 445 of Their Relatives[J]. Circ Heart Fail, 2020, 13(10): e006701.

    [48]

    Pantou MP, Gourzi P, Gkouziouta A, et al. Phenotypic Heterogeneity within Members of a Family Carrying the Same RBM20 Mutation R634W[J]. Cardiology, 2018, 141(3): 150-155. doi: 10.1159/000494453

    [49]

    Hazebroek MR, Krapels I, Verdonschot J, et al. Prevalence of Pathogenic Gene Mutations and Prognosis Do Not Differ in Isolated Left Ventricular Dysfunction Compared With Dilated Cardiomyopathy[J]. Circ Heart Fail, 2018, 11(3): e004682. doi: 10.1161/CIRCHEARTFAILURE.117.004682

    [50]

    van Waning JI, Caliskan K, Hoedemaekers YM, et al. Genetics, Clinical Features, and Long-Term Outcome of Noncompaction Cardiomyopathy[J]. J Am Coll Cardiol, 2018, 71(7): 711-722. doi: 10.1016/j.jacc.2017.12.019

    [51]

    Akinrinade O, Ollila L, Vattulainen S, et al. Genetics and genotype-phenotype correlations in Finnish patients with dilated cardiomyopathy[J]. Eur Heart J, 2015, 36(34): 2327-2337. doi: 10.1093/eurheartj/ehv253

    [52]

    Wells QS, Becker JR, Su YR, et al. Whole exome sequencing identifies a causal RBM20 mutation in a large pedigree with familial dilated cardiomyopathy[J]. Circ Cardiovasc Genet, 2013, 6(4): 317-326. doi: 10.1161/CIRCGENETICS.113.000011

    [53]

    Pugh TJ, Kelly MA, Gowrisankar S, et al. The landscape of genetic variation in dilated cardiomyopathy as surveyed by clinical DNA sequencing[J]. Genet Med, 2014, 16(8): 601-608. doi: 10.1038/gim.2013.204

    [54]

    Wyles SP, Li X, Hrstka SC, et al. Modeling structural and functional deficiencies of RBM20 familial dilated cardiomyopathy using human induced pluripotent stem cells[J]. Hum Mol Genet, 2016, 25(2): 254-265. doi: 10.1093/hmg/ddv468

    [55]

    Millat G, Bouvagnet P, Chevalier P, et al. Clinical and mutational spectrum in a cohort of 105 unrelated patients with dilated cardiomyopathy[J]. Eur J Med Genet, 2011, 54(6): e570-575.

    [56]

    Sun Q, Guo J, Hao C, et al. Whole-exome sequencing reveals two de novo variants in the RBM20 gene in two Chinese patients with left ventricular non-compaction cardiomyopathy[J]. Pediatr Investig, 2020, 4(1): 11-16. doi: 10.1002/ped4.12183

    [57]

    Horvat C, Johnson R, Lam L, et al. A gene-centric strategy for identifying disease-causing rare variants in dilated cardiomyopathy[J]. Genet Med, 2019, 21(1): 133-143. doi: 10.1038/s41436-018-0036-2

    [58]

    Carnevale A, Rosas-Madrigal S, Rosendo-Gutiérrez R, et al. Genomic study of dilated cardiomyopathy in a group of Mexican patients using site-directed next generation sequencing[J]. Mol Genet Genomic Med, 2020, 8(11): e1504. doi: 10.1002/mgg3.1504

    [59]

    van Lint F, Mook O, Alders M, et al. Large next-generation sequencing gene panels in genetic heart disease: yield of pathogenic variants and variants of unknown significance[J]. Neth Heart J, 2019, 27(6): 304-309. doi: 10.1007/s12471-019-1250-5

    [60]

    Long PA, Evans JM, Olson TM. Diagnostic Yield of Whole Exome Sequencing in Pediatric Dilated Cardiomyopathy[J]. J Cardiovasc Dev Dis, 2017, 4(3): 110.

    [61]

    Mehaney DA, Haghighi A, Embaby AK, et al. Molecular analysis of dilated and left ventricular noncompaction cardiomyopathies in Egyptian children[J]. Cardiol Young, 2022, 32(2): 295-300. doi: 10.1017/S1047951121002055

    [62]

    Walsh R, Thomson KL, Ware JS, et al. Reassessment of Mendelian gene pathogenicity using 7, 855 cardiomyopathy cases and 60, 706 reference samples[J]. Genet Med, 2017, 19(2): 192-203. doi: 10.1038/gim.2016.90

  • 加载中

(1)

(1)

计量
  • 文章访问数:  1162
  • PDF下载数:  224
  • 施引文献:  0
出版历程
收稿日期:  2022-11-18
刊出日期:  2023-10-13

目录