潜能未定的克隆性造血:关于衰老、炎症与动脉粥样硬化的新认识

颜红兵, 陈润真. 潜能未定的克隆性造血:关于衰老、炎症与动脉粥样硬化的新认识[J]. 临床心血管病杂志, 2024, 40(5): 355-358. doi: 10.13201/j.issn.1001-1439.2024.05.002
引用本文: 颜红兵, 陈润真. 潜能未定的克隆性造血:关于衰老、炎症与动脉粥样硬化的新认识[J]. 临床心血管病杂志, 2024, 40(5): 355-358. doi: 10.13201/j.issn.1001-1439.2024.05.002
YAN Hongbing, CHEN Runzhen. Clonal hematopoiesis of indeterminate potential: insights about aging, inflammation and atherosclerosis[J]. J Clin Cardiol, 2024, 40(5): 355-358. doi: 10.13201/j.issn.1001-1439.2024.05.002
Citation: YAN Hongbing, CHEN Runzhen. Clonal hematopoiesis of indeterminate potential: insights about aging, inflammation and atherosclerosis[J]. J Clin Cardiol, 2024, 40(5): 355-358. doi: 10.13201/j.issn.1001-1439.2024.05.002

潜能未定的克隆性造血:关于衰老、炎症与动脉粥样硬化的新认识

  • 基金项目:
    国家自然科学基金(No:81970308);深圳市医疗卫生三名工程(No:SZSM201911017);深圳市医学重点学科建设经费(No:SZXK001)
详细信息

Clonal hematopoiesis of indeterminate potential: insights about aging, inflammation and atherosclerosis

More Information
  • 潜能未定的克隆性造血(clonal hematopoiesis of indeterminate potential,CHIP)是一种由年龄相关体细胞突变所致、致病潜能未定的造血干细胞扩增。新近研究显示,CHIP与动脉粥样硬化疾病的发生密切相关,CHIP相关突变(如DNMT3A、TET2、JAK2等)可激活炎症相关信号通路(如NLRP3、AIM2炎症小体等),诱发局部炎症反应,促进动脉粥样硬化斑块的形成,对于抗炎药物的开发与应用有重要意义。本文拟从流行病学、分子机制和临床意义3个方面,探讨CHIP与衰老、炎症和动脉粥样硬化发病机制的关系。
  • 加载中
  • [1]

    Polizio AH, Park E, Walsh K. Clonal hematopoiesis: connecting aging and inflammation in atherosclerosis[J]. Curr Atherosclero Rep, 2023, 25(3): 105-111. doi: 10.1007/s11883-023-01083-5

    [2]

    Khetarpal SA, Qamar A, Bick AG, et al. Clonal hematopoiesis of indeterminate potential reshapes age-related CVD[J]. J Am Coll Cardiol, 2019, 74(4): 578-586. doi: 10.1016/j.jacc.2019.05.045

    [3]

    Libby P, Sidlow R, Lin AE, et al. Clonal hematopoiesis[J]. J Am Coll Cardiol, 2019, 74(4): 567-577. doi: 10.1016/j.jacc.2019.06.007

    [4]

    Jaiswal S. Clonal hematopoiesis and nonhematologic disorders[J]. Blood, 2020, 136(14): 1606-1614.

    [5]

    Evans MA, Sano S, Walsh K. Cardiovascular disease, aging, and clonal hematopoiesis[J]. Annu Rev Pathol, 2020, 15: 419-438. doi: 10.1146/annurev-pathmechdis-012419-032544

    [6]

    Marnell CS, Bick A, Natarajan P. Clonal hematopoiesis of indeterminate potential(CHIP): linking somatic mutations, hematopoiesis, chronic inflammation and cardiovascular disease[J]. J Mol Cell Cardiol, 2021, 161: 98-105. doi: 10.1016/j.yjmcc.2021.07.004

    [7]

    Genovese G, Kähler AK, Handsaker RE, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence[J]. N Engl J Med, 2014, 371(26): 2477-2487. doi: 10.1056/NEJMoa1409405

    [8]

    Jaiswal S, Fontanillas P, Flannick J, et al. Age-related clonal hematopoiesis associated with adverse outcomes[J]. N Engl J Med, 2014, 371(26): 2488-2498. doi: 10.1056/NEJMoa1408617

    [9]

    Jaiswal S, Natarajan P, Silver AJ, et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease[J]. N Engl J Med, 2017, 377(2): 111-121. doi: 10.1056/NEJMoa1701719

    [10]

    Bhattacharya R, Bick AG. Clonal hematopoiesis of indeterminate potential: an expanding genetic cause of cardiovascular disease[J]. Curr Atherosclero Rep, 2021, 23(11): 66. doi: 10.1007/s11883-021-00966-9

    [11]

    Haring B, Wissel S, Manson JE. Somatic mutations and clonal hematopoiesis as drivers of age-related cardiovascular risk[J]. Curr Cardiol Rep, 2022, 24(8): 1049-1058. doi: 10.1007/s11886-022-01724-2

    [12]

    Cobo I, Tanaka T, Glass CK, et al. Clonal hematopoiesis driven by DNMT3A and TET2 mutations: role in monocyte and macrophage biology and atherosclerotic cardiovascular disease[J]. Curr Opin Hematol, 2022, 29(1): 1-7. doi: 10.1097/MOH.0000000000000688

    [13]

    Sano S, Oshima K, Wang Y, et al. Tet2-mediated clonal hematopoiesis accelerates heart failure through a mechanism involving the IL-1β/NLRP3 Inflammasome[J]. J Am Coll Cardiol, 2018, 71(8): 875-886. doi: 10.1016/j.jacc.2017.12.037

    [14]

    Zekavat SM, Viana-Huete V, Matesanz N, et al. TP53-mediated clonal hematopoiesis confers increased risk for incident atherosclerotic disease[J]. Nat Cardiovasc Res, 2023, 2(2): 144-158. doi: 10.1038/s44161-022-00206-6

    [15]

    Bick AG, Pirruccello JP, Griffin GK, et al. Genetic interleukin 6 signaling deficiency attenuates cardiovascular risk in clonal hematopoiesis[J]. Circulation, 2020, 141(2): 124-131. doi: 10.1161/CIRCULATIONAHA.119.044362

    [16]

    Stein A, Metzeler K, Kubasch AS, et al. Clonal hematopoiesis and cardiovascular disease: deciphering interconnections[J]. Basic Res in Cardiol, 2022, 117(1): 5. doi: 10.1007/s00395-022-00912-z

    [17]

    Abplanalp WT, Cremer S, John D, et al. Clonal hematopoiesis-driver DNMT3A mutations alter immune cells in heart failure[J]. Circ Res, 2021, 128(2): 216-228. doi: 10.1161/CIRCRESAHA.120.317104

    [18]

    Sano S, Oshima K, Wang Y, et al. CRISPR-mediated gene editing to assess the roles of Tet2 and Dnmt3a in clonal hematopoiesis and cardiovascular disease[J]. Circ Res, 2018, 123(3): 335-341. doi: 10.1161/CIRCRESAHA.118.313225

    [19]

    Fuster JJ, MacLauchlan S, Zuriaga MA, et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice[J]. Science, 2017, 355(6327): 842-847. doi: 10.1126/science.aag1381

    [20]

    Fidler TP, Xue C, Yalcinkaya M, et al. The AIM2 inflammasome exacerbates atherosclerosis in clonal haematopoiesis[J]. Nature, 2021, 592(7853): 296-301. doi: 10.1038/s41586-021-03341-5

    [21]

    Dotan I, Yang J, Ikeda J, et al. Macrophage Jak2 deficiency accelerates atherosclerosis through defects in cholesterol efflux[J]. Commun Biol, 2022, 5(1): 132. doi: 10.1038/s42003-022-03078-5

    [22]

    Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease[J]. N Engl J Med, 2017, 377(12): 1119-1131. doi: 10.1056/NEJMoa1707914

    [23]

    Svensson EC, Madar A, Campbell CD, et al. TET2-driven clonal hematopoiesis and response to canakinumab[J]. JAMA Cardiology, 2022, 7(5): 521-528. doi: 10.1001/jamacardio.2022.0386

    [24]

    Hafiane A, Daskalopoulou SS. Targeting the residual cardiovascular risk by specific anti-inflammatory interventions as a therapeutic strategy in atherosclerosis[J]. Pharmacol Res, 2022, 178: 106157. doi: 10.1016/j.phrs.2022.106157

    [25]

    Tardif JC, Kouz S, Waters DD, et al. Efficacy and safety of low-dose colchicine after myocardial infarction[J]. N Engl J Med, 2019, 381(26): 2497-2505. doi: 10.1056/NEJMoa1912388

    [26]

    Tall AR, Bornfeldt KE. Inflammasomes and atherosclerosis: a mixed picture[J]. Circ Res, 2023, 132(11): 1505-1520. doi: 10.1161/CIRCRESAHA.123.321637

  • 加载中
WeChat 点击查看大图
计量
  • 文章访问数:  149
  • 施引文献:  0
出版历程
收稿日期:  2024-04-08
刊出日期:  2024-05-13

返回顶部

目录