非奈利酮、钠-葡萄糖共转运蛋白-2抑制剂及两者联合应用对心肾保护作用的研究进展

周明双, 郑绍莹, 张雯, 等. 非奈利酮、钠-葡萄糖共转运蛋白-2抑制剂及两者联合应用对心肾保护作用的研究进展[J]. 临床心血管病杂志, 2024, 40(5): 416-421. doi: 10.13201/j.issn.1001-1439.2024.05.013
引用本文: 周明双, 郑绍莹, 张雯, 等. 非奈利酮、钠-葡萄糖共转运蛋白-2抑制剂及两者联合应用对心肾保护作用的研究进展[J]. 临床心血管病杂志, 2024, 40(5): 416-421. doi: 10.13201/j.issn.1001-1439.2024.05.013
ZHOU Mingshuang, ZHENG Shaoying, ZHANG Wen, et al. Advances in the cardiorenal protective effects of finerenone, sodium-glucose cotransporter-2 inhibitor and their combination[J]. J Clin Cardiol, 2024, 40(5): 416-421. doi: 10.13201/j.issn.1001-1439.2024.05.013
Citation: ZHOU Mingshuang, ZHENG Shaoying, ZHANG Wen, et al. Advances in the cardiorenal protective effects of finerenone, sodium-glucose cotransporter-2 inhibitor and their combination[J]. J Clin Cardiol, 2024, 40(5): 416-421. doi: 10.13201/j.issn.1001-1439.2024.05.013

非奈利酮、钠-葡萄糖共转运蛋白-2抑制剂及两者联合应用对心肾保护作用的研究进展

  • 基金项目:
    云南省心血管病临床医学中心项目(No:FZX2019-06-01);云南省心血管系统疾病临床医学研究中心-重大心血管疾病诊治新技术研发(No:202103AC100004);云南省阜外心血管病医院人才托举计划-学科发展计划(No:2024RCTJ-XK002、2024RCTJ-XK003)
详细信息

Advances in the cardiorenal protective effects of finerenone, sodium-glucose cotransporter-2 inhibitor and their combination

More Information
  • 非奈利酮是一种新型非甾体醛固酮受体拮抗剂,其心肾保护作用已得到证实。钠-葡萄糖共转运蛋白-2抑制剂是一类新型降糖药。近期研究表明,其具有独立于降糖的心血管及肾脏保护作用。两药联合应用是否在单药基础上进一步增加心肾获益已成为最新研究热点之一。本文综述了两药单一治疗和联合治疗对心肾保护作用的研究进展,旨在为合理用药及开展进一步的研究提供参考。
  • 加载中
  • [1]

    Otsuka H, Abe M, Kobayashi H. The Effect of Aldosterone on Cardiorenal and Metabolic Systems[J]. Int J Mol Sci, 2023, 24(6): 5370. doi: 10.3390/ijms24065370

    [2]

    余万乾, 沈文, 杨萍萍, 等. 非奈利酮在心血管及相关疾病的研究进展[J]. 临床心血管病杂志, 2022, 38(11): 916-920. https://lcxxg.whuhzzs.com/article/doi/10.13201/j.issn.1001-1439.2022.11.013

    [3]

    黄坤, 廖玉华. 2023 ESC糖尿病合并心血管疾病管理指南解读[J]. 临床心血管病杂志, 2023, 39(10): 753-755. https://lcxxg.whuhzzs.com/article/doi/10.13201/j.issn.1001-1439.2023.10.004

    [4]

    Bärfacker L, Kuhl A, Hillisch A, et al. Discovery of BAY 94-8862: a nonsteroidal antagonist of the mineralocorticoid receptor for the treatment of cardiorenal diseases[J]. Chem Med Chem, 2012, 7(8): 1385-1403. doi: 10.1002/cmdc.201200081

    [5]

    Capelli I, Gasperoni L, Ruggeri M, et al. New mineralocorticoid receptor antagonists: update on their use in chronic kidney disease and heart failure[J]. J Nephrol, 2020, 33(1): 37-48. doi: 10.1007/s40620-019-00600-7

    [6]

    Gil-Ortega M, Vega-Martín E, Martín-Ramos M, et al. Finerenone Reduces Intrinsic Arterial Stiffness in Munich Wistar Frömter Rats, a Genetic Model of Chronic Kidney Disease[J]. Am J Nephrol, 2020, 51(4): 294-303. doi: 10.1159/000506275

    [7]

    Martínez-Martínez E, Buonafine M, Boukhalfa I, et al. Aldosterone Target NGAL(Neutrophil Gelatinase-Associated Lipocalin)Is Involved in Cardiac Remodeling After Myocardial Infarction Through NFκB Pathway[J]. Hypertension, 2017, 70(6): 1148-1156. doi: 10.1161/HYPERTENSIONAHA.117.09791

    [8]

    Barrera-Chimal J, Estrela GR, Lechner SM, et al. The myeloid mineralocorticoid receptor controls inflammatory and fibrotic responses after renal injury via macrophage interleukin-4 receptor signaling[J]. Kidney Int, 2018, 93(6): 1344-1355. doi: 10.1016/j.kint.2017.12.016

    [9]

    Luettges K, Bode M, Diemer JN, et al. Finerenone Reduces Renal RORγt γδ T Cells and Protects against Cardiorenal Damage[J]. Am J Nephrol, 2022, 53(7): 552-564. doi: 10.1159/000524940

    [10]

    Bakris GL, Agarwal R, Chan JC, et al. Effect of Finerenone on Albuminuria in Patients With Diabetic Nephropathy: A Randomized Clinical Trial[J]. JAMA, 2015, 314(9): 884-894. doi: 10.1001/jama.2015.10081

    [11]

    Pitt B, Kober L, Ponikowski P, et al. Safety and tolerability of the novel non-steroidal mineralocorticoid receptor antagonist BAY 94-8862 in patients with chronic heart failure and mild or moderate chronic kidney disease: a randomized, double-blind trial[J]. Eur Heart J, 2013, 34(31): 2453-2463. doi: 10.1093/eurheartj/eht187

    [12]

    Sato N, Ajioka M, Yamada T, et al. A Randomized Controlled Study of Finerenone vs. Eplerenone in Japanese Patients With Worsening Chronic Heart Failure and Diabetes and/or Chronic Kidney Disease[J]. Circ J, 2016, 80(5): 1113-1122. doi: 10.1253/circj.CJ-16-0122

    [13]

    Bakris GL, Agarwal R, Anker SD, et al. Effect of Finerenone on Chronic Kidney Disease Outcomes in Type 2 Diabetes[J]. N Engl J Med, 2020, 383(23): 2219-2229. doi: 10.1056/NEJMoa2025845

    [14]

    Pitt B, Filippatos G, Agarwal R, et al. Cardiovascular Events with Finerenone in Kidney Disease and Type 2 Diabetes[J]. N Engl J Med, 2021, 385(24): 2252-2263. doi: 10.1056/NEJMoa2110956

    [15]

    Agarwal R, Filippatos G, Pitt B, et al. Cardiovascular and kidney outcomes with finerenone in patients with type 2 diabetes and chronic kidney disease: the FIDELITY pooled analysis[J]. Eur Heart J, 2022, 43(6): 474-484. doi: 10.1093/eurheartj/ehab777

    [16]

    Young TK, Toussaint ND, Di Tanna GL, et al. Risk Factors for Fracture in Patients with Coexisting Chronic Kidney Disease and Type 2 Diabetes: An Observational Analysis from the CREDENCE Trial[J]. J Diabetes Res, 2022, 2022: 9998891.

    [17]

    Filippatos G, Pitt B, Agarwal R, et al. Finerenone in patients with chronic kidney disease and type 2 diabetes with and without heart failure: a prespecified subgroup analysis of the FIDELIO-DKD trial[J]. Eur J Heart Fail, 2022, 24(6): 996-1005. doi: 10.1002/ejhf.2469

    [18]

    Filippatos G, Bakris GL, Pitt B, et al. Finerenone Reduces New-Onset Atrial Fibrillation in Patients With Chronic Kidney Disease and Type 2 Diabetes[J]. J Am Coll Cardiol, 2021, 78(2): 142-152. doi: 10.1016/j.jacc.2021.04.079

    [19]

    ElSayed NA, Aleppo G, Aroda VR, et al. Introduction and Methodology: Standards of Care in Diabetes-2023[J]. Diabetes Care, 2023, 46(Suppl 1): S1-S4.

    [20]

    Agarwal R, Kolkhof P, Bakris G, et al. Steroidal and non-steroidal mineralocorticoid receptor antagonists in cardiorenal medicine[J]. Eur Heart J, 2021, 42(2): 152-161. doi: 10.1093/eurheartj/ehaa736

    [21]

    Kolkhof P, Delbeck M, Kretschmer A, et al. Finerenone, a novel selective nonsteroidal mineralocorticoid receptor antagonist protects from rat cardiorenal injury[J]. J Cardiovasc Pharmacol, 2014, 64(1): 69-78. doi: 10.1097/FJC.0000000000000091

    [22]

    McMurray J, Docherty KF, Jhund PS. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. Reply[J]. N Engl J Med, 2020, 382(10): 973.

    [23]

    Packer M, Anker SD, Butler J, et al. Effect of Empagliflozin on the Clinical Stability of Patients With Heart Failure and a Reduced Ejection Fraction: The EMPEROR-Reduced Trial[J]. Circulation, 2021, 143(4): 326-336. doi: 10.1161/CIRCULATIONAHA.120.051783

    [24]

    Anker SD, Butler J, Filippatos G, et al. Empagliflozin in Heart Failure with a Preserved Ejection Fraction[J]. N Engl J Med, 2021, 385(16): 1451-1461. doi: 10.1056/NEJMoa2107038

    [25]

    Ostrominski JW, Vaduganathan M, Claggett BL, et al. Dapagliflozin and New York Heart Association functional class in heart failure with mildly reduced or preserved ejection fraction: the DELIVER trial[J]. Eur J Heart Fail, 2022, 24(10): 1892-1901. doi: 10.1002/ejhf.2652

    [26]

    Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy[J]. N Engl J Med, 2019, 380(24): 2295-2306. doi: 10.1056/NEJMoa1811744

    [27]

    Heerspink H, Stefánsson BV, Correa-Rotter R, et al. Dapagliflozin in Patients with Chronic Kidney Disease[J]. N Engl J Med, 2020, 383(15): 1436-1446. doi: 10.1056/NEJMoa2024816

    [28]

    Rosano G, Moura B, Metra M, et al. Patient profiling in heart failure for tailoring medical therapy. A consensus document of the Heart Failure Association of the European Society of Cardiology[J]. Eur J Heart Fail, 2021, 23(6): 872-881. doi: 10.1002/ejhf.2206

    [29]

    Heidenreich PA, Bozkurt B, Aguilar D, et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines[J]. J Am Coll Cardiol, 2022, 79(17): 1757-1780. doi: 10.1016/j.jacc.2021.12.011

    [30]

    Vallon V. The mechanisms and therapeutic potential of SGLT2 inhibitors in diabetes mellitus[J]. Annu Rev Med, 2015, 66: 255-270. doi: 10.1146/annurev-med-051013-110046

    [31]

    Margonato D, Galati G, Mazzetti S, et al. Renal protection: a leading mechanism for cardiovascular benefit in patients treated with SGLT2 inhibitors[J]. Heart Fail Rev, 2021, 26(2): 337-345. doi: 10.1007/s10741-020-10024-2

    [32]

    Luft FC. Solute excretion, metabolism, and cardio-renoprotection via two distinct mechanisms revolutionize clinical outcomes[J]. Acta Physiol(Oxf), 2021, 232(3): e13589. doi: 10.1111/apha.13589

    [33]

    Heerspink HJ, Perkins BA, Fitchett DH, et al. Sodium Glucose Cotransporter 2 Inhibitors in the Treatment of Diabetes Mellitus: Cardiovascular and Kidney Effects, Potential Mechanisms, and Clinical Applications[J]. Circulation, 2016, 134(10): 752-772. doi: 10.1161/CIRCULATIONAHA.116.021887

    [34]

    Green JB, Mottl AK, Bakris G, et al. Design of the combination effect of fInerenone and empagliflozin in participants with chronic kidney disease and type 2 diabetes using a UACR Endpoint study(CONFIDENCE)[J]. Nephrol Dial Transplant, 2023, 38(4): 894-903. doi: 10.1093/ndt/gfac198

    [35]

    Kolkhof P, Hartmann E, Freyberger A, et al. Effects of Finerenone Combined with Empagliflozin in a Model of Hypertension-Induced End-Organ Damage[J]. Am J Nephrol, 2021, 52(8): 642-652. doi: 10.1159/000516213

    [36]

    Rossing P, Anker SD, Filippatos G, et al. Finerenone in Patients With Chronic Kidney Disease and Type 2 Diabetes by Sodium-Glucose Cotransporter 2 Inhibitor Treatment: The FIDELITY Analysis[J]. Diabetes Care, 2022, 45(12): 2991-2998. doi: 10.2337/dc22-0294

    [37]

    Patoulias D, Papadopoulos C, Karagiannis A, et al. Cardiovascular Outcomes with Finerenone According to Glycemic Status at Baseline and Prior Treatment with Newer Antidiabetics among Patients with Type 2 Diabetes Mellitus[J]. Endocrinol Metab(Seoul), 2022, 37(1): 170-174. doi: 10.3803/EnM.2021.1296

    [38]

    Filippatos TD, Tsimihodimos V, Liamis G, et al. SGLT2 inhibitors-induced electrolyte abnormalities: An analysis of the associated mechanisms[J]. Diabetes Metab Syndr, 2018, 12(1): 59-63. doi: 10.1016/j.dsx.2017.08.003

    [39]

    Rossing P, Filippatos G, Agarwal R, et al. Finerenone in Predominantly Advanced CKD and Type 2 Diabetes With or Without Sodium-Glucose Cotransporter-2 Inhibitor Therapy[J]. Kidney Int Rep, 2022, 7(1): 36-45. doi: 10.1016/j.ekir.2021.10.008

    [40]

    Levey AS, Gansevoort RT, Coresh J, et al. Change in Albuminuria and GFR as End Points for Clinical Trials in Early Stages of CKD: A Scientific Workshop Sponsored by the National Kidney Foundation in Collaboration With the US Food and Drug Administration and European Medicines Agency[J]. Am J Kidney Dis, 2020, 75(1): 84-104. doi: 10.1053/j.ajkd.2019.06.009

    [41]

    Oshima M, Neuen BL, Li J, et al. Early Change in Albuminuria with Canagliflozin Predicts Kidney and Cardiovascular Outcomes: A PostHoc Analysis from the CREDENCE Trial[J]. J Am Soc Nephrol, 2020, 31(12): 2925-2936. doi: 10.1681/ASN.2020050723

  • 加载中
计量
  • 文章访问数:  566
  • PDF下载数:  314
  • 施引文献:  0
出版历程
收稿日期:  2023-04-12
刊出日期:  2024-05-13

目录