-
摘要: 钠-葡萄糖协同转运蛋白2(SGLT2)抑制剂是一种新型的口服降糖药,越来越多的临床研究显示SGLT2抑制剂可以改善糖尿病或非糖尿病患者的心血管预后,显示出SGLT2抑制剂的多效性。但SGLT2抑制剂在急性心肌梗死中的作用尚不明确,本文就SGLT2抑制剂在急性心肌梗死动物实验和临床研究作一综述。Abstract: The sodium glucose cotransporter 2 (SGLT2) inhibitor is a new type of oral hypoglycemic drug. An increasing number of clinical studies show that SGLT2 inhibitors could improve the cardiovascular prognosis of diabetes or non-diabetes patients, showing the pleiotropic effect of SGLT2 inhibitors. However, the role of SGLT2 inhibitors in acute myocardial infarction remains unclear. This article reviews animal experiments and clinical studies of SGLT2 inhibitors in acute myocardial infarction.
-
Key words:
- acute myocardial infarction /
- SGLT2 inhibitor /
- ventricular remodeling /
- arrhythmias
-
[1] Ferrannini E. Sodium-Glucose Co-transporters and Their Inhibition: Clinical Physiology[J]. Cell Metab, 2017, 26(1): 27-38. doi: 10.1016/j.cmet.2017.04.011
[2] 廖梦阳, 廖玉华, 余淼, 等. SGLT2抑制剂治疗心力衰竭潜在机制的新认识[J]. 临床心血管病杂志, 2022, 38(1): 1-6. https://lcxxg.whuhzzs.com/article/doi/10.13201/j.issn.1001-1439.2022.01.001
[3] Bolinder J, Ljunggren Ö, Kullberg J, et al. Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with type 2 diabetes mellitus with inadequate glycemic control on metformin[J]. J Clin Endocrinol Metab, 2012, 97(3): 1020-1031. doi: 10.1210/jc.2011-2260
[4] Giugliano D, Longo M, Scappaticcio L, et al. SGLT-2 inhibitors and cardiorenal outcomes in patients with or without type 2 diabetes: a meta-analysis of 11 CVOTs[J]. Cardiovasc Diabetol, 2021, 20(1): 236. doi: 10.1186/s12933-021-01430-3
[5] Lundin M, Ferrannini G, Mellbin L, et al. SOdium-glucose CO-transporter inhibition in patients with newly detected Glucose Abnormalities and a recent Myocardial Infarction(SOCOGAMI)[J]. Diabetes Res Clin Pract, 2022, 193: 110141. doi: 10.1016/j.diabres.2022.110141
[6] Zinman B, Wanner C, Lachin J M, et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes[J]. N Engl J Med, 2015, 373(22): 2117-2128. doi: 10.1056/NEJMoa1504720
[7] Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes[J]. N Engl J Med, 2017, 377(7): 644-657. doi: 10.1056/NEJMoa1611925
[8] Bell RM, Yellon DM. SGLT2 inhibitors: hypotheses on the mechanism of cardiovascular protection[J]. Lancet Diabetes Endocrinol, 2018, 6(6): 435-437. doi: 10.1016/S2213-8587(17)30314-5
[9] You L, Wang Q, Ma Y, et al. Precise dapagliflozin delivery by cardiac homing peptide functionalized mesoporous silica nanocarries for heart failure repair after myocardial infarction[J]. Front Chem, 2022, 10: 1013910. doi: 10.3389/fchem.2022.1013910
[10] Zhang T, Deng W, Deng Y, et al. Mechanisms of ferroptosis regulating oxidative stress and energy metabolism in myocardial ischemia-reperfusion injury and a novel perspective of natural plant active ingredients for its treatment[J]. Biomed Pharmacother, 2023, 165: 114706. doi: 10.1016/j.biopha.2023.114706
[11] Shi Y, Zhang H, Huang S, et al. Epigenetic regulation in cardiovascular disease: mechanisms and advances in clinical trials[J]. Signal Transduct Target Ther, 2022, 7(1): 200. doi: 10.1038/s41392-022-01055-2
[12] Wang K, Li Z, Sun Y, et al. Dapagliflozin Improves Cardiac Function, Remodeling, Myocardial Apoptosis, and Inflammatory Cytokines in Mice with Myocardial Infarction[J]. J Cardiovasc Transl Res, 2022, 15(4): 786-796. doi: 10.1007/s12265-021-10192-y
[13] Kataoka T. Biological properties of the BCL-2 family protein BCL-RAMBO, which regulates apoptosis, mitochondrial fragmentation, and mitophagy[J]. Front Cell Dev Biol, 2022, 10: 1065702. doi: 10.3389/fcell.2022.1065702
[14] Goerg J, Sommerfeld M, Greiner B, et al. Low-Dose Empagliflozin Improves Systolic Heart Function after Myocardial Infarction in Rats: Regulation of MMP9, NHE1, and SERCA2a[J]. Int J Mol Sci, 2021, 22(11): 5437. doi: 10.3390/ijms22115437
[15] Samuel TJ, Rosenberry RP, Lee S, et al. Correcting Calcium Dysregulation in Chronic Heart Failure Using SERCA2a Gene Therapy[J]. Int J Mol Sci, 2018, 19(4): 1086. doi: 10.3390/ijms19041086
[16] Jiang K, Xu Y, Wang D, et al. Cardioprotective mechanism of SGLT2 inhibitor against myocardial infarction is through reduction of autosis[J]. Protein Cell, 2022, 13(5): 336-359. doi: 10.1007/s13238-020-00809-4
[17] Xia H, Zahra A, Jia M, et al. Na(+)/H(+)Exchanger 1, a Potential Therapeutic Drug Target for Cardiac Hypertrophy and Heart Failure[J]. Pharmaceuticals(Basel), 2022, 15(7): 875. doi: 10.3390/ph15070875
[18] Gong L, Wang X, Pan J, et al. The co-treatment of rosuvastatin with dapagliflozin synergistically inhibited apoptosis via activating the PI3K/AKt/mTOR signaling pathway in myocardial ischemia/reperfusion injury rats[J]. Open Med(Wars), 2021, 15(1): 47-57.
[19] Yang C, Liu X, Yang F, et al. Mitochondrial phosphatase PGAM5 regulates Keap1-mediated Bcl-xL degradation and controls cardiomyocyte apoptosis driven by myocardial ischemia/reperfusion injury[J]. In Vitro Cell Dev Biol Anim, 2017, 53(3): 248-257. doi: 10.1007/s11626-016-0105-2
[20] Fan ZG, Xu Y, Chen X, et al. Appropriate Dose of Dapagliflozin Improves Cardiac Outcomes by Normalizing Mitochondrial Fission and Reducing Cardiomyocyte Apoptosis After Acute Myocardial Infarction[J]. Drug Des Devel Ther, 2022, 16: 2017-2030. doi: 10.2147/DDDT.S371506
[21] Ju F, Abbott GW, Li J, et al. Canagliflozin Pretreatment Attenuates Myocardial Dysfunction and Improves Postcardiac Arrest Outcomes After Cardiac Arrest and Cardiopulmonary Resuscitation in Mice[J]. Cardiovasc Drugs Ther, 2024, 38(2): 279-295. doi: 10.1007/s10557-022-07419-8
[22] Guo H, Callaway JB, Ting JP. Inflammasomes: mechanism of action, role in disease, and therapeutics[J]. Nat Med, 2015, 21(7): 677-687. doi: 10.1038/nm.3893
[23] Liu Y, Lian K, Zhang L, et al. TXNIP mediates NLRP3 inflammasome activation in cardiac microvascular endothelial cells as a novel mechanism in myocardial ischemia/reperfusion injury[J]. Basic Res Cardiol, 2014, 109(5): 415. doi: 10.1007/s00395-014-0415-z
[24] Yu YW, Que JQ, Liu S, et al. Sodium-Glucose Co-transporter-2 Inhibitor of Dapagliflozin Attenuates Myocardial Ischemia/Reperfusion Injury by Limiting NLRP3 Inflammasome Activation and Modulating Autophagy[J]. Front Cardiovasc Med, 2021, 8: 768214.
[25] Paolisso P, Bergamaschi L, Santulli G, et al. Infarct size, inflammatory burden, and admission hyperglycemia in diabetic patients with acute myocardial infarction treated with SGLT2-inhibitors: a multicenter international registry[J]. Cardiovasc Diabetol, 2022, 21(1): 77. doi: 10.1186/s12933-022-01506-8
[26] Furtado R, Bonaca MP, Raz I, et al. Dapagliflozin and Cardiovascular Outcomes in Patients With Type 2 Diabetes Mellitus and Previous Myocardial Infarction[J]. Circulation, 2019, 139(22): 2516-2527. doi: 10.1161/CIRCULATIONAHA.119.039996
[27] von Lewinski D, Kolesnik E, Tripolt N J, et al. Empagliflozin in acute myocardial infarction: the EMMY trial[J]. Eur Heart J, 2022, 43(41): 4421-4432. doi: 10.1093/eurheartj/ehac494
[28] Dayem KA, Younis O, Zarif B, et al. Impact of dapagliflozin on cardiac function following anterior myocardial infarction in non-diabetic patients-DACAMI(a randomized controlled clinical trial)[J]. Int J Cardiol, 2023, 379: 9-14. doi: 10.1016/j.ijcard.2023.03.002
[29] Di Diego JM, Antzelevitch C. Ischemic ventricular arrhythmias: experimental models and their clinical relevance[J]. Heart Rhythm, 2011, 8(12): 1963-1968. doi: 10.1016/j.hrthm.2011.06.036
[30] Sattler SM, Skibsbye L, Linz D, et al. Ventricular Arrhythmias in First Acute Myocardial Infarction: Epidemiology, Mechanisms, and Interventions in Large Animal Models[J]. Front Cardiovasc Med, 2019, 6: 158. doi: 10.3389/fcvm.2019.00158
[31] Liang C, Li Q, Wang K, et al. Mechanisms of ventricular arrhythmias elicited by coexistence of multiple electrophysiological remodeling in ischemia: A simulation study[J]. PLoS Comput Biol, 2022, 18(4): e1009388. doi: 10.1371/journal.pcbi.1009388
[32] Deo R, Albert CM. Epidemiology and genetics of sudden cardiac death[J]. Circulation, 2012, 125(4): 620-637. doi: 10.1161/CIRCULATIONAHA.111.023838
[33] Behnes M, Mashayekhi K, Weiß C, et al. Prognostic Impact of Acute Myocardial Infarction in Patients Presenting With Ventricular Tachyarrhythmias and Aborted Cardiac Arrest[J]. J Am Heart Assoc, 2018, 7(19): e010004. doi: 10.1161/JAHA.118.010004
[34] Frontera A, Melillo F, Baldetti L, et al. High-Density Characterization of the Ventricular Electrical Substrate During Sinus Rhythm in Post-Myocardial Infarction Patients[J]. JACC Clin Electrophysiol, 2020, 6(7): 799-811. doi: 10.1016/j.jacep.2020.04.008
[35] Tao B, Liu Z, Wei F, et al. Over-expression of Kv4.3 gene reverses cardiac remodeling and transient-outward K(+)current(Ito)reduction via CaMKⅡ inhibition in myocardial infarction[J]. Biomed Pharmacother, 2020, 132: 110896. doi: 10.1016/j.biopha.2020.110896
[36] Xue G, Yang X, Zhan G, et al. Sodium-Glucose cotransporter 2 inhibitor empagliflozin decreases ventricular arrhythmia susceptibility by alleviating electrophysiological remodeling post-myocardial-infarction in mice[J]. Front Pharmacol, 2022, 13: 988408. doi: 10.3389/fphar.2022.988408
[37] Hu Z, Ju F, Du L, et al. Empagliflozin protects the heart against ischemia/reperfusion-induced sudden cardiac death[J]. Cardiovasc Diabetol, 2021, 20(1): 199. doi: 10.1186/s12933-021-01392-6
[38] Ferrannini E, Baldi S, Frascerra S, et al. Shift to Fatty Substrate Utilization in Response to Sodium-Glucose Cotransporter 2 Inhibition in Subjects Without Diabetes and Patients With Type 2 Diabetes[J]. Diabetes, 2016, 65(5): 1190-1195. doi: 10.2337/db15-1356
[39] Cotter DG, Schugar RC, Crawford PA. Ketone body metabolism and cardiovascular disease[J]. Am J Physiol Heart Circ Physiol, 2013, 304(8): H1060-H1076. doi: 10.1152/ajpheart.00646.2012
[40] Cesaro A, Gragnano F, Paolisso P, et al. In-hospital arrhythmic burden reduction in diabetic patients with acute myocardial infarction treated with SGLT2-inhibitors: Insights from the SGLT2-I AMI PROTECT study[J]. Front Cardiovasc Med, 2022, 9: 1012220. doi: 10.3389/fcvm.2022.1012220
[41] lnci Ü, Güzel T. The effect of empagliflozin on index of cardio-electrophysiological balance in patients with diabetes mellitus[J]. Pacing Clin Electrophysiol, 2023, 46(1): 44-49. doi: 10.1111/pace.14621
[42] Panikkath R, Reinier K, Uy-Evanado A, et al. Prolonged Tpeak-to-tend interval on the resting ECG is associated with increased risk of sudden cardiac death[J]. Circ Arrhythm Electrophysiol, 2011, 4(4): 441-447. doi: 10.1161/CIRCEP.110.960658
[43] Shimizu W, Kubota Y, Hoshika Y, et al. Effects of empagliflozin versus placebo on cardiac sympathetic activity in acute myocardial infarction patients with type 2 diabetes mellitus: the EMBODY trial[J]. Cardiovasc Diabetol, 2020, 19(1): 148. doi: 10.1186/s12933-020-01127-z
[44] Shanmugasundaram M, Paul T, Hashemzadeh M, et al. Outcomes of Percutaneous Coronary Intervention in Atrial Fibrillation Patients Presenting With Acute Myocardial Infarction: Analysis of Nationwide Inpatient Sample Database[J]. Cardiovasc Revasc Med, 2020, 21(7): 851-854. doi: 10.1016/j.carrev.2019.12.011
[45] Engström A, Wintzell V, Melbye M, et al. Sodium-Glucose Cotransporter 2 Inhibitor Treatment and Risk of Atrial Fibrillation: Scandinavian Cohort Study[J]. Diabetes Care, 2023, 46(2): 351-360. doi: 10.2337/dc22-0714
[46] Fatima K, Suri A, Rija A, et al. The Effect of Sodium-Glucose Co-Transporter 2 Inhibitors on Stroke and Atrial Fibrillation: A Systematic Review and Meta-Analysis[J]. Curr Probl Cardiol, 2023, 48(4): 101582. doi: 10.1016/j.cpcardiol.2022.101582
[47] Oshima H, Miki T, Kuno A, et al. Empagliflozin, an SGLT2 Inhibitor, Reduced the Mortality Rate after Acute Myocardial Infarction with Modification of Cardiac Metabolomes and Antioxidants in Diabetic Rats[J]. J Pharmacol Exp Ther, 2019, 368(3): 524-534. doi: 10.1124/jpet.118.253666
[48] Aubert G, Martin OJ, Horton JL, et al. The Failing Heart Relies on Ketone Bodies as a Fuel[J]. Circulation, 2016, 133(8): 698-705. doi: 10.1161/CIRCULATIONAHA.115.017355
[49] Yurista SR, Silljé H, Oberdorf-Maass SU, et al. Sodium-glucose co-transporter 2 inhibition with empagliflozin improves cardiac function in non-diabetic rats with left ventricular dysfunction after myocardial infarction[J]. Eur J Heart Fail, 2019, 21(7): 862-873. doi: 10.1002/ejhf.1473
[50] Verma S, Rawat S, Ho KL, et al. Empagliflozin Increases Cardiac Energy Production in Diabetes: Novel Translational Insights Into the Heart Failure Benefits of SGLT2 Inhibitors[J]. JACC Basic Transl Sci, 2018, 3(5): 575-587. doi: 10.1016/j.jacbts.2018.07.006
[51] Santos-Gallego CG, Requena-Ibanez JA, San Antonio R, et al. Empagliflozin Ameliorates Adverse Left Ventricular Remodeling in Nondiabetic Heart Failure by Enhancing Myocardial Energetics[J]. J Am Coll Cardiol, 2019, 73(15): 1931-1944. doi: 10.1016/j.jacc.2019.01.056
[52] Li X, Lu Q, Qiu Y, et al. Direct Cardiac Actions of the Sodium Glucose Co-Transporter 2 Inhibitor Empagliflozin Improve Myocardial Oxidative Phosphorylation and Attenuate Pressure-Overload Heart Failure[J]. J Am Heart Assoc, 2021, 10(6): e018298. doi: 10.1161/JAHA.120.018298
计量
- 文章访问数: 981
- PDF下载数: 415
- 施引文献: 0