Research progress in the intraluminal imaging technology in the diagnosis and treatment of coronary artery diseases
-
摘要: 腔内影像技术较传统冠状动脉(冠脉)造影可以更加准确评估冠脉内结构、明确斑块特征和病变类型,是指导及优化经皮冠脉介入治疗的重要辅助工具。随着腔内影像技术的不断发展,其已被广泛应用于冠脉病变的介入诊治中。本文基于国内外临床研究和指南建议,就腔内影像技术在冠脉疾病诊治中的应用研究进展进行综述。
-
关键词:
- 腔内影像 /
- 经皮冠状动脉介入治疗 /
- 功能性评估
Abstract: Intraluminal imaging technology can more accurately assess the internal structure of coronary arteries, clarify plaque characteristics and lesion types compared to traditional coronary angiography, and is an important auxiliary tool for guiding and optimizing percutaneous coronary intervention treatment. With the continuous development of intraluminal imaging technology, it has been widely used in the interventional diagnosis and treatment of coronary artery lesions. This article reviews the progress in the application of intraluminal imaging technology in the diagnosis and treatment of coronary artery diseases based on clinical research and guideline recommendations at home and abroad. -
-
表 1 IVUS与OCT的比较
Table 1. Comparison between IVUS and OCT
技术手段 IVUS OCT 成像原理 超声波反射 红外光反射 分辨率 低 高,约为IVUS的10倍 组织穿透性 强,8~10 mm 弱,1~2 mm 回撤速度 慢,1 mm/s 快,25 mm/s 造影剂 不需要 需要 识别斑块特征 斑块负荷、衰减斑块、低回声斑块 纤维斑块、脂质斑块、钙化斑块 主要应用 左主干病变、开口病变、分叉病变、慢性完全闭塞、合并肾功能不全 血栓、夹层、支架膨胀、支架贴壁、支架内膜异质性、分叉病变 -
[1] 霍勇, 郑博, 刘耀琨. 冠心病介入诊疗最新临床研究进展[J]. 临床心血管病杂志, 2023, 39(5): 327-331. https://lcxxg.whuhzzs.com/article/doi/10.13201/j.issn.1001-1439.2023.05.001
[2] Olender ML, Athanasiou LS, Michalis LK, et al. A domain enriched deep learning approach to classify atherosclerosis using intravascular ultrasound imaging[J]. IEEE J Sel Top Signal Process, 2020, 14(6): 1210-1220. doi: 10.1109/JSTSP.2020.3002385
[3] Roland R, Veselka J. Optical coherence tomography of the coronary arteries[J]. Int J Angiol, 2021, 30(1): 29-39. doi: 10.1055/s-0041-1724019
[4] Baruś P, Modrzewski J, Gumiężna K, et al. Comparative appraisal of intravascular ultrasound and optical coherence tomography in invasive coronary imaging: 2022 update[J]. J Clin Med, 2022, 11(14): 4055. doi: 10.3390/jcm11144055
[5] Li BH, Leung AS, Soong A, et al. Hybrid intravascular ultrasound and optical coherence tomography catheter for imaging of coronary atherosclerosis[J]. Catheter Cardiovasc Interv, 2013, 81(3): 494-507. doi: 10.1002/ccd.24295
[6] Sheth TN, Pinilla-Echeverri N, Mehta SR, et al. First-in-human images of coronary atherosclerosis and coronary stents using a novel hybrid intravascular ultrasound and optical coherence tomographic catheter[J]. JACC Cardiovasc Interv, 2018, 11(23): 2427-2430. doi: 10.1016/j.jcin.2018.09.022
[7] Jia H, Zhao C, Yu H, et al. Clinical performance of a novel hybrid IVUS-OCT system: a multicentre, randomised, non-inferiority trial(PANOVISION)[J]. Euro Intervention, 2023, 19(4): e318-e320.
[8] Kubo T, Terada K, Ino Y, et al. Combined use of multiple intravascular imaging techniques in acute coronary syndrome[J]. Front Cardiovasc Med, 2022, 8: 824128. doi: 10.3389/fcvm.2021.824128
[9] Madder RD, Goldstein JA, Madden SP, et al. Detection by near-infrared spectroscopy of large lipid core plaques at culprit sites in patients with acute ST-segment elevation myocardial infarction[J]. JACC Cardiovasc Interv, 2013, 6(8): 838-846. doi: 10.1016/j.jcin.2013.04.012
[10] Bergmark BA, Mathenge N, Merlini PA, et al. Acute coronary syndromes[J]. Lancet, 2022, 399(10332): 1347-1358. doi: 10.1016/S0140-6736(21)02391-6
[11] van Veelen A, van der Sangen N, Henriques J, et al. Identification and treatment of the vulnerable coronary plaque[J]. Rev Cardiovasc Med, 2022, 23(1): 39.
[12] Stone GW, Maehara A, Lansky AJ, et al. A prospective natural-history study of coronary atherosclerosis[J]. N Engl J Med, 2011, 364(3): 226-235. doi: 10.1056/NEJMoa1002358
[13] Erlinge D, Maehara A, Ben-Yehuda O, et al. Identification of vulnerable plaques and patients by intracoronary near-infrared spectroscopy and ultrasound(PROSPECT Ⅱ): a prospective natural history study[J]. Lancet, 2021, 397(10278): 985-995. doi: 10.1016/S0140-6736(21)00249-X
[14] Shishikura D, Kataoka Y, Di Giovanni G, et al. Progression of ultrasound plaque attenuation and low echogenicity associates with major adverse cardiovascular events[J]. Eur Heart J, 2020, 41(31): 2965-2973. doi: 10.1093/eurheartj/ehaa173
[15] Jia H, Dai J, Hou J, et al. Effective anti-thrombotic therapy without stenting: intravascular optical coherence tomography-based management in plaque erosion(the EROSION study)[J]. Eur Heart J, 2017, 38(11): 792-800.
[16] Prati F, Romagnoli E, Gatto L, et al. Relationship between coronary plaque morphology of the left anterior descending artery and 12 months clinical outcome: the CLIMA study[J]. Eur Heart J, 2020, 41(3): 383-391. doi: 10.1093/eurheartj/ehz520
[17] Liu X, Sun C, Tian J, et al. Shrinkage as a potential mechanism of recurrent clinical events in patients with a large vulnerable plaque[J]. J Cardiovasc Med(Hagerstown), 2019, 20(8): 518-524. doi: 10.2459/JCM.0000000000000783
[18] Zaidan M, Alkhalil M, Alaswad K. Calcium modification therapies in contemporary percutaneous coronary intervention[J]. Curr Cardiol Rev, 2022, 18(1): e281221199533. doi: 10.2174/1573403X18666211228095457
[19] Fujino A, Mintz GS, Matsumura M, et al. A new optical coherence tomography-based calcium scoring system to predict stent underexpansion[J]. Euro Intervention, 2018, 13(18): e2182-e2189.
[20] Ma W, Wang Q, Wang B, et al. Novel predictors of stent under-expansion regarding calcified coronary lesions assessed by optical coherence tomography[J]. Catheter Cardiovasc Interv, 2022, 99 Suppl 1: 1473-1481.
[21] Kyodo A, Okura H, Okamura A, et al. Incidence and characteristics of incomplete stent apposition in calcified lesions: an optical coherence tomography study[J]. Cardiovasc Revasc Med, 2022, 41: 55-60. doi: 10.1016/j.carrev.2021.12.032
[22] 王伟民, 霍勇, 葛均波. 冠状动脉钙化病变诊治中国专家共识(2021版)[J]. 中国介入心脏病学杂志, 2021, 29(5): 251-259. doi: 10.3969/j.issn.1004-8812.2021.05.002
[23] Kumar P, Jino B, Roy S, et al. Absolute zero-contrast percutaneous coronary intervention under intravascular ultrasound guidance in chronic kidney disease patients-From despair to hope?[J]. Int J Cardiol Heart Vasc, 2022, 40: 101052.
[24] Yoon JY, Lee JH, Choi H, et al. Impact of intravascular ultrasound and final kissing balloon dilatation on long-term clinical outcome in percutaneous revascularization with 1-stent strategy for left main coronary artery stenosis in drug-eluting stent era[J]. Coron Artery Dis, 2022, 31(1): 9-17.
[25] Kim JS, Hong MK, Ko YG, et al. Impact of intravascular ultrasound guidance on long-term clinical outcomes in patients treated with drug-eluting stent for bifurcation lesions: data from a Korean multicenter bifurcation registry[J]. Am Heart J, 2011, 161(1): 180-187. doi: 10.1016/j.ahj.2010.10.002
[26] Takagi K, Nagoshi R, Kim BK, et al. Efficacy of coronary imaging on bifurcation intervention[J]. Cardiovasc Interv Ther, 2021, 36(1): 54-66. doi: 10.1007/s12928-020-00701-2
[27] Lee JM, Choi KH, Song YB, et al. Intravascular imaging-guided or angiography-guided complex PCI[J]. N Engl J Med, 2023, 388(18): 1668-1679. doi: 10.1056/NEJMoa2216607
[28] Holm NR, Andreasen LN, Neghabat O, et al. OCT or angiography guidance for PCI in complex bifurcation lesions[J]. N Engl J Med, 2023, 389(16): 1477-1487. doi: 10.1056/NEJMoa2307770
[29] Neumann FJ, Sousa-Uva M, Ahlsson A, et al. 2018 ESC/EACTS Guidelines on myocardial revascularization[J]. Eur Heart J, 2019, 40(2): 87-165. doi: 10.1093/eurheartj/ehy394
[30] Lawton JS, Tamis-Holland JE, Bangalore S, et al. 2021 ACC/AHA/SCAI Guideline for Coronary Artery Revascularization: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines[J]. Circulation, 2022, 145(3): e18-e114.
[31] Andell P, Karlsson S, Mohammad MA, et al. Intravascular ultrasound guidance is associated with better outcome in patients undergoing unprotected left main coronary artery stenting compared with angiography guidance alone[J]. Circ Cardiovasc Interv, 2017, 10(5): e004813. doi: 10.1161/CIRCINTERVENTIONS.116.004813
[32] Hong SJ, Mintz GS, Ahn CM, et al. Effect of intravascular ultrasound-guided drug-eluting stent implantation: 5-year follow-up of the IVUS-XPL Randomized Trial[J]. JACC Cardiovasc Interv, 2020, 13(1): 62-71. doi: 10.1016/j.jcin.2019.09.033
[33] Zhang J, Gao X, Kan J, et al. Intravascular ultrasound versus angiography-guided drug-eluting stent implantation: The ULTIMATE Trial[J]. J Am Coll Cardiol, 2018, 72(24): 3126-3137. doi: 10.1016/j.jacc.2018.09.013
[34] Ali ZA, Landmesser U, Maehara A, et al. Optical coherence tomography-guided versus angiography-guided PCI[J]. N Engl J Med, 2023, 389(16): 1466-1476. doi: 10.1056/NEJMoa2305861
[35] Kang DY, Ahn JM, Yun SC, et al. Optical coherence tomography-guided or intravascular ultrasound guided percutaneous coronary intervention: The OCTIVUS Randomized Clinical Trial[J]. Circulation, 2023, 148(16): 1195-1206. doi: 10.1161/CIRCULATIONAHA.123.066429
[36] Kleber FX, Rittger H, Ludwig J, et al. Drug eluting balloons as stand alone procedure for coronary bifurcational lesions: results of the randomized multicenter PEPCAD-BIF trial[J]. Clin Res Cardiol, 2016, 105(7): 613-621. doi: 10.1007/s00392-015-0957-6
[37] Jeger RV, Farah A, Ohlow MA, et al. Drug-coated balloons for small coronary artery disease(BASKET-SMALL 2): an open-label randomised non-inferiority trial[J]. Lancet, 2018, 392(10150): 849-856. doi: 10.1016/S0140-6736(18)31719-7
[38] 陈韵岱, 邱春光, 唐强, 等. 药物涂层球囊临床应用中国专家共识(第二版)[J]. 中国介入心脏病学杂志, 2023, 31(6): 413-426. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJXB202306003.htm
[39] Kim HO, Jung HW, Lee JH, et al. Neointima characteristics as a prognostic marker for drug-coated balloon angioplasty in patients with in-stent restenosis: an optical coherence tomography study[J]. Coron Artery Dis, 2020, 31(8): 694-702. doi: 10.1097/MCA.0000000000000946
[40] Lee JH, Jung HW, Kim JS, et al. Different neointimal pattern in early vs. late in-stent restenosis and clinical outcomes after drug-coated balloon angioplasty-an optical coherence tomography study[J]. Circ J, 2018, 82(11): 2745-2752. doi: 10.1253/circj.CJ-18-0619
[41] Her AY, Shin ES, Chung JH, et al. Plaque modification and stabilization after paclitaxel-coated balloon treatment for de novo coronary lesions[J]. Heart Vessels, 2019, 34(7): 1113-1121. doi: 10.1007/s00380-019-01346-9
[42] Ali ZA, Maehara A, Généreux P, et al. Optical coherence tomography compared with intravascular ultrasound and with angiography to guide coronary stent implantation(ILUMIEN Ⅲ: OPTIMIZE PCI): a randomised controlled trial[J]. Lancet, 2016, 388(10060): 2618-2628. doi: 10.1016/S0140-6736(16)31922-5
[43] Collet JP, Thiele H, Barbato E, et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation[J]. Eur Heart J, 2021, 42(14): 1289-1367.
[44] Knuuti J, Wijns W, Saraste A, et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes[J]. Eur Heart J, 2020, 41(3): 407-477.
[45] Zhang J, Jiang J, Hu X, et al. Sex Differences in Fractional Flow Reserve-or Intravascular Ultrasound-Guided Percutaneous Coronary Intervention[J]. JACC Cardiovasc Interv, 2023, 16(19): 2426-2435.
[46] Koo BK, Hu X, Kang J, et al. Fractional flow reserve or intravascular ultrasonography to guide PCI[J]. N Engl J Med, 2022, 387(9): 779-789.
[47] Burzotta F, Leone AM, Aurigemma C, et al. Fractional flow reserve or optical coherence tomography to guide management of angiographically intermediate coronary stenosis: a single-center trial[J]. JACC Cardiovasc Interv, 2020, 13(1): 49-58.
[48] Tian F, Yu W, Huang J, et al. First presentation of integration of intravascular optical coherence tomography and computational fractional flow reserve[J]. Int J Cardiovasc Imaging, 2019, 35(4): 601-602.
[49] Yu W, Huang J, Jia D, et al. Diagnostic accuracy of intracoronary optical coherence tomography-derived fractional flow reserve for assessment of coronary stenosis severity[J]. Euro Intervention, 2019, 15(2): 189-197.
[50] Gutiérrez-Chico JL, Chen Y, Yu W, et al. Diagnostic accuracy and reproducibility of optical flow ratio for functional evaluation of coronary stenosis in a prospective series[J]. Cardiol J, 2020, 27(4): 350-361.
[51] Yu W, Tanigaki T, Ding D, et al. Accuracy of intravascular ultrasound-based fractional flow reserve in identifying hemodynamic significance of coronary stenosis[J]. Circ Cardiovasc Interv, 2021, 14(2): e009840.
-