腔内影像技术在冠状动脉疾病诊治中的应用研究进展

乔斌超, 陈小平, 司妮璐, 等. 腔内影像技术在冠状动脉疾病诊治中的应用研究进展[J]. 临床心血管病杂志, 2024, 40(8): 617-623. doi: 10.13201/j.issn.1001-1439.2024.08.003
引用本文: 乔斌超, 陈小平, 司妮璐, 等. 腔内影像技术在冠状动脉疾病诊治中的应用研究进展[J]. 临床心血管病杂志, 2024, 40(8): 617-623. doi: 10.13201/j.issn.1001-1439.2024.08.003
QIAO Binchao, CHEN Xiaoping, SI Nilu, et al. Research progress in the intraluminal imaging technology in the diagnosis and treatment of coronary artery diseases[J]. J Clin Cardiol, 2024, 40(8): 617-623. doi: 10.13201/j.issn.1001-1439.2024.08.003
Citation: QIAO Binchao, CHEN Xiaoping, SI Nilu, et al. Research progress in the intraluminal imaging technology in the diagnosis and treatment of coronary artery diseases[J]. J Clin Cardiol, 2024, 40(8): 617-623. doi: 10.13201/j.issn.1001-1439.2024.08.003

腔内影像技术在冠状动脉疾病诊治中的应用研究进展

详细信息
    通讯作者: 贾永平,E-mail:jyp1022@126.com
  • 中图分类号: R541.4

Research progress in the intraluminal imaging technology in the diagnosis and treatment of coronary artery diseases

More Information
  • 腔内影像技术较传统冠状动脉(冠脉)造影可以更加准确评估冠脉内结构、明确斑块特征和病变类型,是指导及优化经皮冠脉介入治疗的重要辅助工具。随着腔内影像技术的不断发展,其已被广泛应用于冠脉病变的介入诊治中。本文基于国内外临床研究和指南建议,就腔内影像技术在冠脉疾病诊治中的应用研究进展进行综述。
  • 加载中
  • 表 1  IVUS与OCT的比较

    Table 1.  Comparison between IVUS and OCT

    技术手段 IVUS OCT
    成像原理 超声波反射 红外光反射
    分辨率 高,约为IVUS的10倍
    组织穿透性 强,8~10 mm 弱,1~2 mm
    回撤速度 慢,1 mm/s 快,25 mm/s
    造影剂 不需要 需要
    识别斑块特征 斑块负荷、衰减斑块、低回声斑块 纤维斑块、脂质斑块、钙化斑块
    主要应用 左主干病变、开口病变、分叉病变、慢性完全闭塞、合并肾功能不全 血栓、夹层、支架膨胀、支架贴壁、支架内膜异质性、分叉病变
    下载: 导出CSV
  • [1]

    霍勇, 郑博, 刘耀琨. 冠心病介入诊疗最新临床研究进展[J]. 临床心血管病杂志, 2023, 39(5): 327-331. https://lcxxg.whuhzzs.com/article/doi/10.13201/j.issn.1001-1439.2023.05.001

    [2]

    Olender ML, Athanasiou LS, Michalis LK, et al. A domain enriched deep learning approach to classify atherosclerosis using intravascular ultrasound imaging[J]. IEEE J Sel Top Signal Process, 2020, 14(6): 1210-1220. doi: 10.1109/JSTSP.2020.3002385

    [3]

    Roland R, Veselka J. Optical coherence tomography of the coronary arteries[J]. Int J Angiol, 2021, 30(1): 29-39. doi: 10.1055/s-0041-1724019

    [4]

    Baruś P, Modrzewski J, Gumiężna K, et al. Comparative appraisal of intravascular ultrasound and optical coherence tomography in invasive coronary imaging: 2022 update[J]. J Clin Med, 2022, 11(14): 4055. doi: 10.3390/jcm11144055

    [5]

    Li BH, Leung AS, Soong A, et al. Hybrid intravascular ultrasound and optical coherence tomography catheter for imaging of coronary atherosclerosis[J]. Catheter Cardiovasc Interv, 2013, 81(3): 494-507. doi: 10.1002/ccd.24295

    [6]

    Sheth TN, Pinilla-Echeverri N, Mehta SR, et al. First-in-human images of coronary atherosclerosis and coronary stents using a novel hybrid intravascular ultrasound and optical coherence tomographic catheter[J]. JACC Cardiovasc Interv, 2018, 11(23): 2427-2430. doi: 10.1016/j.jcin.2018.09.022

    [7]

    Jia H, Zhao C, Yu H, et al. Clinical performance of a novel hybrid IVUS-OCT system: a multicentre, randomised, non-inferiority trial(PANOVISION)[J]. Euro Intervention, 2023, 19(4): e318-e320.

    [8]

    Kubo T, Terada K, Ino Y, et al. Combined use of multiple intravascular imaging techniques in acute coronary syndrome[J]. Front Cardiovasc Med, 2022, 8: 824128. doi: 10.3389/fcvm.2021.824128

    [9]

    Madder RD, Goldstein JA, Madden SP, et al. Detection by near-infrared spectroscopy of large lipid core plaques at culprit sites in patients with acute ST-segment elevation myocardial infarction[J]. JACC Cardiovasc Interv, 2013, 6(8): 838-846. doi: 10.1016/j.jcin.2013.04.012

    [10]

    Bergmark BA, Mathenge N, Merlini PA, et al. Acute coronary syndromes[J]. Lancet, 2022, 399(10332): 1347-1358. doi: 10.1016/S0140-6736(21)02391-6

    [11]

    van Veelen A, van der Sangen N, Henriques J, et al. Identification and treatment of the vulnerable coronary plaque[J]. Rev Cardiovasc Med, 2022, 23(1): 39.

    [12]

    Stone GW, Maehara A, Lansky AJ, et al. A prospective natural-history study of coronary atherosclerosis[J]. N Engl J Med, 2011, 364(3): 226-235. doi: 10.1056/NEJMoa1002358

    [13]

    Erlinge D, Maehara A, Ben-Yehuda O, et al. Identification of vulnerable plaques and patients by intracoronary near-infrared spectroscopy and ultrasound(PROSPECT Ⅱ): a prospective natural history study[J]. Lancet, 2021, 397(10278): 985-995. doi: 10.1016/S0140-6736(21)00249-X

    [14]

    Shishikura D, Kataoka Y, Di Giovanni G, et al. Progression of ultrasound plaque attenuation and low echogenicity associates with major adverse cardiovascular events[J]. Eur Heart J, 2020, 41(31): 2965-2973. doi: 10.1093/eurheartj/ehaa173

    [15]

    Jia H, Dai J, Hou J, et al. Effective anti-thrombotic therapy without stenting: intravascular optical coherence tomography-based management in plaque erosion(the EROSION study)[J]. Eur Heart J, 2017, 38(11): 792-800.

    [16]

    Prati F, Romagnoli E, Gatto L, et al. Relationship between coronary plaque morphology of the left anterior descending artery and 12 months clinical outcome: the CLIMA study[J]. Eur Heart J, 2020, 41(3): 383-391. doi: 10.1093/eurheartj/ehz520

    [17]

    Liu X, Sun C, Tian J, et al. Shrinkage as a potential mechanism of recurrent clinical events in patients with a large vulnerable plaque[J]. J Cardiovasc Med(Hagerstown), 2019, 20(8): 518-524. doi: 10.2459/JCM.0000000000000783

    [18]

    Zaidan M, Alkhalil M, Alaswad K. Calcium modification therapies in contemporary percutaneous coronary intervention[J]. Curr Cardiol Rev, 2022, 18(1): e281221199533. doi: 10.2174/1573403X18666211228095457

    [19]

    Fujino A, Mintz GS, Matsumura M, et al. A new optical coherence tomography-based calcium scoring system to predict stent underexpansion[J]. Euro Intervention, 2018, 13(18): e2182-e2189.

    [20]

    Ma W, Wang Q, Wang B, et al. Novel predictors of stent under-expansion regarding calcified coronary lesions assessed by optical coherence tomography[J]. Catheter Cardiovasc Interv, 2022, 99 Suppl 1: 1473-1481.

    [21]

    Kyodo A, Okura H, Okamura A, et al. Incidence and characteristics of incomplete stent apposition in calcified lesions: an optical coherence tomography study[J]. Cardiovasc Revasc Med, 2022, 41: 55-60. doi: 10.1016/j.carrev.2021.12.032

    [22]

    王伟民, 霍勇, 葛均波. 冠状动脉钙化病变诊治中国专家共识(2021版)[J]. 中国介入心脏病学杂志, 2021, 29(5): 251-259. doi: 10.3969/j.issn.1004-8812.2021.05.002

    [23]

    Kumar P, Jino B, Roy S, et al. Absolute zero-contrast percutaneous coronary intervention under intravascular ultrasound guidance in chronic kidney disease patients-From despair to hope?[J]. Int J Cardiol Heart Vasc, 2022, 40: 101052.

    [24]

    Yoon JY, Lee JH, Choi H, et al. Impact of intravascular ultrasound and final kissing balloon dilatation on long-term clinical outcome in percutaneous revascularization with 1-stent strategy for left main coronary artery stenosis in drug-eluting stent era[J]. Coron Artery Dis, 2022, 31(1): 9-17.

    [25]

    Kim JS, Hong MK, Ko YG, et al. Impact of intravascular ultrasound guidance on long-term clinical outcomes in patients treated with drug-eluting stent for bifurcation lesions: data from a Korean multicenter bifurcation registry[J]. Am Heart J, 2011, 161(1): 180-187. doi: 10.1016/j.ahj.2010.10.002

    [26]

    Takagi K, Nagoshi R, Kim BK, et al. Efficacy of coronary imaging on bifurcation intervention[J]. Cardiovasc Interv Ther, 2021, 36(1): 54-66. doi: 10.1007/s12928-020-00701-2

    [27]

    Lee JM, Choi KH, Song YB, et al. Intravascular imaging-guided or angiography-guided complex PCI[J]. N Engl J Med, 2023, 388(18): 1668-1679. doi: 10.1056/NEJMoa2216607

    [28]

    Holm NR, Andreasen LN, Neghabat O, et al. OCT or angiography guidance for PCI in complex bifurcation lesions[J]. N Engl J Med, 2023, 389(16): 1477-1487. doi: 10.1056/NEJMoa2307770

    [29]

    Neumann FJ, Sousa-Uva M, Ahlsson A, et al. 2018 ESC/EACTS Guidelines on myocardial revascularization[J]. Eur Heart J, 2019, 40(2): 87-165. doi: 10.1093/eurheartj/ehy394

    [30]

    Lawton JS, Tamis-Holland JE, Bangalore S, et al. 2021 ACC/AHA/SCAI Guideline for Coronary Artery Revascularization: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines[J]. Circulation, 2022, 145(3): e18-e114.

    [31]

    Andell P, Karlsson S, Mohammad MA, et al. Intravascular ultrasound guidance is associated with better outcome in patients undergoing unprotected left main coronary artery stenting compared with angiography guidance alone[J]. Circ Cardiovasc Interv, 2017, 10(5): e004813. doi: 10.1161/CIRCINTERVENTIONS.116.004813

    [32]

    Hong SJ, Mintz GS, Ahn CM, et al. Effect of intravascular ultrasound-guided drug-eluting stent implantation: 5-year follow-up of the IVUS-XPL Randomized Trial[J]. JACC Cardiovasc Interv, 2020, 13(1): 62-71. doi: 10.1016/j.jcin.2019.09.033

    [33]

    Zhang J, Gao X, Kan J, et al. Intravascular ultrasound versus angiography-guided drug-eluting stent implantation: The ULTIMATE Trial[J]. J Am Coll Cardiol, 2018, 72(24): 3126-3137. doi: 10.1016/j.jacc.2018.09.013

    [34]

    Ali ZA, Landmesser U, Maehara A, et al. Optical coherence tomography-guided versus angiography-guided PCI[J]. N Engl J Med, 2023, 389(16): 1466-1476. doi: 10.1056/NEJMoa2305861

    [35]

    Kang DY, Ahn JM, Yun SC, et al. Optical coherence tomography-guided or intravascular ultrasound guided percutaneous coronary intervention: The OCTIVUS Randomized Clinical Trial[J]. Circulation, 2023, 148(16): 1195-1206. doi: 10.1161/CIRCULATIONAHA.123.066429

    [36]

    Kleber FX, Rittger H, Ludwig J, et al. Drug eluting balloons as stand alone procedure for coronary bifurcational lesions: results of the randomized multicenter PEPCAD-BIF trial[J]. Clin Res Cardiol, 2016, 105(7): 613-621. doi: 10.1007/s00392-015-0957-6

    [37]

    Jeger RV, Farah A, Ohlow MA, et al. Drug-coated balloons for small coronary artery disease(BASKET-SMALL 2): an open-label randomised non-inferiority trial[J]. Lancet, 2018, 392(10150): 849-856. doi: 10.1016/S0140-6736(18)31719-7

    [38]

    陈韵岱, 邱春光, 唐强, 等. 药物涂层球囊临床应用中国专家共识(第二版)[J]. 中国介入心脏病学杂志, 2023, 31(6): 413-426. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJXB202306003.htm

    [39]

    Kim HO, Jung HW, Lee JH, et al. Neointima characteristics as a prognostic marker for drug-coated balloon angioplasty in patients with in-stent restenosis: an optical coherence tomography study[J]. Coron Artery Dis, 2020, 31(8): 694-702. doi: 10.1097/MCA.0000000000000946

    [40]

    Lee JH, Jung HW, Kim JS, et al. Different neointimal pattern in early vs. late in-stent restenosis and clinical outcomes after drug-coated balloon angioplasty-an optical coherence tomography study[J]. Circ J, 2018, 82(11): 2745-2752. doi: 10.1253/circj.CJ-18-0619

    [41]

    Her AY, Shin ES, Chung JH, et al. Plaque modification and stabilization after paclitaxel-coated balloon treatment for de novo coronary lesions[J]. Heart Vessels, 2019, 34(7): 1113-1121. doi: 10.1007/s00380-019-01346-9

    [42]

    Ali ZA, Maehara A, Généreux P, et al. Optical coherence tomography compared with intravascular ultrasound and with angiography to guide coronary stent implantation(ILUMIEN Ⅲ: OPTIMIZE PCI): a randomised controlled trial[J]. Lancet, 2016, 388(10060): 2618-2628. doi: 10.1016/S0140-6736(16)31922-5

    [43]

    Collet JP, Thiele H, Barbato E, et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation[J]. Eur Heart J, 2021, 42(14): 1289-1367.

    [44]

    Knuuti J, Wijns W, Saraste A, et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes[J]. Eur Heart J, 2020, 41(3): 407-477.

    [45]

    Zhang J, Jiang J, Hu X, et al. Sex Differences in Fractional Flow Reserve-or Intravascular Ultrasound-Guided Percutaneous Coronary Intervention[J]. JACC Cardiovasc Interv, 2023, 16(19): 2426-2435.

    [46]

    Koo BK, Hu X, Kang J, et al. Fractional flow reserve or intravascular ultrasonography to guide PCI[J]. N Engl J Med, 2022, 387(9): 779-789.

    [47]

    Burzotta F, Leone AM, Aurigemma C, et al. Fractional flow reserve or optical coherence tomography to guide management of angiographically intermediate coronary stenosis: a single-center trial[J]. JACC Cardiovasc Interv, 2020, 13(1): 49-58.

    [48]

    Tian F, Yu W, Huang J, et al. First presentation of integration of intravascular optical coherence tomography and computational fractional flow reserve[J]. Int J Cardiovasc Imaging, 2019, 35(4): 601-602.

    [49]

    Yu W, Huang J, Jia D, et al. Diagnostic accuracy of intracoronary optical coherence tomography-derived fractional flow reserve for assessment of coronary stenosis severity[J]. Euro Intervention, 2019, 15(2): 189-197.

    [50]

    Gutiérrez-Chico JL, Chen Y, Yu W, et al. Diagnostic accuracy and reproducibility of optical flow ratio for functional evaluation of coronary stenosis in a prospective series[J]. Cardiol J, 2020, 27(4): 350-361.

    [51]

    Yu W, Tanigaki T, Ding D, et al. Accuracy of intravascular ultrasound-based fractional flow reserve in identifying hemodynamic significance of coronary stenosis[J]. Circ Cardiovasc Interv, 2021, 14(2): e009840.

  • 加载中
计量
  • 文章访问数:  1544
  • PDF下载数:  368
  • 施引文献:  0
出版历程
收稿日期:  2023-09-17
刊出日期:  2024-08-13

目录