西宁地区急性心肌梗死患者血清PGRN、MCP-1、CDC42与血管病变程度的研究

杨启娟, 苏晓灵. 西宁地区急性心肌梗死患者血清PGRN、MCP-1、CDC42与血管病变程度的研究[J]. 临床心血管病杂志, 2024, 40(8): 637-643. doi: 10.13201/j.issn.1001-1439.2024.08.007
引用本文: 杨启娟, 苏晓灵. 西宁地区急性心肌梗死患者血清PGRN、MCP-1、CDC42与血管病变程度的研究[J]. 临床心血管病杂志, 2024, 40(8): 637-643. doi: 10.13201/j.issn.1001-1439.2024.08.007
YANG Qijuan, SU Xiaoling. Correlation among PGRN, MCP-1 and CDC42 in serum and the degree of vascular lesions in patients with acute myocardial infarction in Xining region[J]. J Clin Cardiol, 2024, 40(8): 637-643. doi: 10.13201/j.issn.1001-1439.2024.08.007
Citation: YANG Qijuan, SU Xiaoling. Correlation among PGRN, MCP-1 and CDC42 in serum and the degree of vascular lesions in patients with acute myocardial infarction in Xining region[J]. J Clin Cardiol, 2024, 40(8): 637-643. doi: 10.13201/j.issn.1001-1439.2024.08.007

西宁地区急性心肌梗死患者血清PGRN、MCP-1、CDC42与血管病变程度的研究

  • 基金项目:
    2023年青海省卫生健康系统重点课题(No:2023-wjzd-01);2021年度青海省“昆仑英才·高端创新创业人才”计划
详细信息

Correlation among PGRN, MCP-1 and CDC42 in serum and the degree of vascular lesions in patients with acute myocardial infarction in Xining region

More Information
  • 目的  分析西宁地区急性心肌梗死(AMI)患者血清颗粒蛋白前体(progranulin,PGRN)、单核细胞趋化蛋白1(monocyte chemoattractant protein-1,MCP-1)、细胞分裂周期蛋白42(cell division cycle 42,CDC42)水平,及其与血管病变程度的相关性。 方法  收集2022年7月—2023年12月在青海省人民医院心血管内科住院的81例AMI患者为病例组,同期80例非冠心病患者为对照组。收集患者一般资料、实验室检查、心脏彩色超声等,酶联免疫吸附法测定各组血清PGRN、MCP-1、CDC42水平;多因素logistic回归分析AMI的危险因素。根据Gensini评分、冠状动脉(冠脉)病变支数及全球急性冠脉事件登记(GRACE)评分将AMI患者进行亚分组。分析各亚组PGRN、MCP-1、CDC42水平与血管病变程度的相关性。 结果  ① 与对照组比较,AMI组的血清PGRN、MCP-1水平升高(P<0.05),CDC42水平降低(P<0.05);②不同冠脉狭窄程度的血清PGRN、MCP-1、CDC42均有统计学差异(P<0.05);③不同冠脉血管病变支数的血清PGRN、MCP-1、CDC42均有统计学差异(P<0.05);④不同GRACE评分组的血清PGRN、MCP-1、CDC42均无统计学差异;⑤AMI组中PGRN、MCP-1与Gensini评分、病变支数均呈正相关(P<0.05),与GRACE评分无相关;而AMI组CDC42与Gensini评分、病变支数呈负相关(P<0.05),与GRACE评分无相关;⑥Logistic回归分析示,PGRN、MCP-1是AMI的独立危险因素(P<0.05)。 结论  血清PGRN、MCP-1与Gensini评分、冠脉病变支数呈正相关,CDC42与Gensini评分、冠脉病变支数呈负相关。PGRN、MCP-1是AMI发生的独立危险因素。
  • 加载中
  • 表 1  两组患者的一般临床资料比较

    Table 1.  Comparison of general clinical data between the two groups X±S, 例(%)

    指标 AMI组(81例) 对照组(80例) χ2/t P
    年龄/岁 62.90±11.14 60.06±9.51 1.738 0.084
    男性 55(67.9) 44(55.0) 2.310 0.129
    吸烟史 38(46.9) 25(31.3) 3.154 0.061
    饮酒史 11(13.6) 17(21.3) 1.157 0.282
    高血压 53(65.4) 55(68.8) 0.028 0.868
    糖尿病 34(42.0) 23(28.7) 2.527 0.112
    钙通道阻滞剂 33(40.7) 38(47.5) 0.497 0.481
    β受体阻滞剂 5(6.2) 11(13.8) 1.805 0.179
    血管紧张素转换酶抑制剂 7(8.6) 16(20.0) 3.363 0.067
    利尿剂 6(7.4) 7(8.8) 0.001 0.981
    利血平 1(1.2) 1(1.3) 0.000 1.000
    二甲双胍 8(9.9) 9(11.3) 0.001 0.978
    胰岛素 10(12.3) 6(7.5) 0.584 0.445
    阿卡波糖 3(3.7) 2(2.5) 0.000 1.000
    他汀类药物 2(2.5) 1(1.3) 0.000 1.000
    下载: 导出CSV

    表 2  两组患者的实验室资料比较

    Table 2.  Comparison of the laboratory data between the two patient groups X±S, M(P25, P75)

    指标 AMI组(81例) 对照组(80例) t/Z P
    WBC/(×109/L) 9.73(8.07,12.15) 5.54(4.63,6.81) -9.562 <0.001
    RBC/(×1012/L) 4.92(4.56,5.50) 4.77(4.37,5.04) -2.404 0.016
    Hb/(g/L) 157.00(145.00,169.00) 143.50(135.25,157.50) -3.404 <0.001
    NEUT/(×109/L) 7.28(6.08,9.11) 3.16(2.57,4.13) -10.165 <0.001
    LYM/(×109/L) 1.36(0.97,2.04) 1.73(1.40,2.16) -3.302 <0.001
    PLT/(×109/L) 190.00(150.00,235.00) 180.50(149.50,214.75) -1.035 0.301
    hs-CRP/(mg/dL) 0.92(0.20,1.86) 0.12(0.05,0.27) -6.578 <0.001
    TG/(mmol/L) 1.57(1.00,2.00) 1.51(0.99,2.25) -0.377 0.706
    TC/(mmol/L) 4.46±1.20 4.38±1.02 0.456 0.649
    LDL-C/(mmol/L) 2.68±0.81 2.57±0.79 0.853 0.395
    HDL-C/(mmol/L) 0.99±0.27 1.06±0.26 -1.712 0.089
    HbA1c/% 6.17(5.62,7.66) 5.74(5.53,6.18) -2.641 0.008
    ALT/(U/L) 31.00(21.00,41.00) 18.50(13.00,29.75) -4.129 <0.001
    AST/(U/L) 45.00(25.50,92.50) 20.50(17.00,28.00) -6.744 <0.001
    cTnI/(pg/mL) 10 968.60(1 483.20,26 406.00) 2.30(1.45,3.50) -10.909 <0.001
    CK-MB/(U/L) 64.00(28.50,147.00) 9.00(7.00,10.75) -10.204 <0.001
    Cr/(μmol/L) 82.00(74.50,92.00) 76.00(66.25,83.00) -3.846 <0.001
    UA/(μmol/L) 357.00(296.00,447.50) 327.00(286.50,397.50) -2.042 0.041
    下载: 导出CSV

    表 3  两组患者的心脏彩色超声比较

    Table 3.  Comparison of cardiac color ultrasound in the two groups M(P25, P75)

    指标 AMI组(81例) 对照组(80例) Z P
    LAD/mm 38.00(36.00,42.50) 35.00(32.00,37.75) -4.696 <0.001
    LVEDD/mm 50.00(46.00,55.00) 46.00(44.00,48.00) -4.720 <0.001
    IVST/mm 10.00(9.00,11.00) 10.00(9.00,10.00) -2.126 0.034
    LVPWT/mm 10.00(9.00,11.00) 10.00(9.00,10.00) -2.097 0.036
    LVEF/% 57.00(49.00,61.00) 66.00(63.00,69.00) -8.019 <0.001
    下载: 导出CSV

    表 4  两组PGRN、MCP-1、CDC42水平比较

    Table 4.  Comparison of PGRN, MCP-1, and CDC42 levels between the two groups M(P25, P75)

    指标 AMI组(81例) 对照组(80例) Z P
    PGRN/(pg/mL) 239.20(182.10,343.73) 126.24(51.80,202.01) -6.308 <0.001
    MCP-1/(pg/mL) 131.55(52.92,223.78) 32.47(19.62,89.87) -6.312 <0.001
    CDC42/(ng/mL) 1.10(0.64,1.70) 1.20(0.79,2.35) -2.148 0.032
    下载: 导出CSV

    表 5  不同Gensini评分组别AMI患者的PGRN、MCP-1和CDC42的比较

    Table 5.  comparison of PGRN, MCP-1 and CDC42 in patients with AMI in different Gensini score groups M(P25, P75)

    指标 轻度狭窄组(16例) 中度狭窄组(38例) 重度狭窄组(27例) H P
    PGRN/(pg/mL) 172.09(108.18,216.76) 232.76(182.54,296.13)1) 330.42(230.71,427.67)1)2) 18.882 <0.001
    MCP-1/(pg/mL) 44.53(30.22,114.95) 125.79(68.84,188.42)1) 184.52(130.36,325.86)1)2) 20.622 <0.001
    CDC42/(ng/mL) 1.80(1.43,1.94) 1.11(0.73,1.59)1) 0.61(0.38,1.11)1)2) 13.038 0.001
    与轻度狭窄组比较,1)P<0.05;与中度狭窄组比较,2)P<0.05。
    下载: 导出CSV

    表 6  不同冠脉血管病变支数AMI患者的PGRN、MCP-1和CDC42的比较

    Table 6.  comparison of PGRN, MCP-1 and CDC42 in patients with AMI with different coronary vascular lesions M(P25, P75)

    指标 单支病变组(41例) 双支病变组(29例) 3支病变组(11例) H P
    PGRN/(pg/mL) 185.60(147.53,225.83) 280.88(238.22,336.48)1) 427.67(360.42,465.86)1)2) 36.609 <0.001
    MCP-1/(pg/mL) 66.12(40.10,111.54) 169.80(143.07,245.79)1) 340.09(322.69,373.13)1)2) 51.324 <0.001
    CDC42/(ng/mL) 1.56(1.21,1.93) 0.86(0.61,1.09)1) 0.38(0.27,0.50)1)2) 43.209 <0.001
    与单支病变组比较,1)P<0.05;与双支病变组比较,2)P<0.05。
    下载: 导出CSV

    表 7  不同GRACE评分组别AMI患者的PGRN、MCP-1和CDC42的比较

    Table 7.  comparison of PGRN, MCP-1, and CDC42 in AMI patients for the different GRACE score groups M(P25, P75)

    指标 低风险组(21例) 中风险组(36例) 高风险组(24例) H P
    PGRN/(pg/mL) 225.35(163.14,307.66) 226.32(184.69,353.94) 263.22(198.19,360.42) 1.551 0.460
    MCP-1/(pg/mL) 109.71(50.90,222.05) 130.26(49.17,158.36) 191.65(81.98,251.15) 3.721 0.156
    CDC42/(ng/mL) 1.11(0.88,1.75) 1.13(0.64,1.82) 0.86(0.58,1.40) 2.301 0.317
    下载: 导出CSV

    表 8  AMI组中PGRN、MCP-1、CDC42与cTNI、CK-MB、病变支数、GRACE评分的相关性分析

    Table 8.  PGRN, MCP-1, CDC42 and cTNI, CK-MB, and lesion branch in the AMI group Correlation analysis of the number and GRACE scores

    指标 PGRN MCP-1 CDC42
    rs P rs P rs P
    cTnI 0.509 <0.001 0.403 <0.001 -0.056 0.479
    CK-MB 0.469 <0.001 0.441 <0.001 -0.117 0.140
    Gensini评分 0.483 <0.001 0.501 <0.001 -0.514 <0.001
    GRACE评分 0.138 0.220 0.152 0.175 -0.151 0.177
    病变支数 0.670 <0.001 0.799 <0.001 -0.733 <0.001
    下载: 导出CSV

    表 9  AMI的单因素logistic回归分析

    Table 9.  Univariate analysis of the AMI

    因素 B SE Wald P OR(95%CI)
    WBC 1.075 0.169 40.334 <0.001 2.930(2.103~4.082)
    RBC 0.603 0.252 5.703 0.017 1.827(1.114~2.995)
    Hb 0.024 0.008 8.453 0.004 1.025(1.008~1.041)
    NEUT 1.533 0.252 37.078 <0.001 4.634(2.829~7.590)
    hs-CRP 0.669 0.220 9.257 0.002 1.952(1.269~3.004)
    ALT 0.018 0.008 4.660 0.031 1.018(1.002~1.034)
    AST 0.046 0.011 18.853 <0.001 1.047(1.025~1.069)
    HbA1c 0.366 0.132 7.729 0.005 1.443(1.114~1.868)
    Cr 0.055 0.014 14.558 <0.001 1.056(1.027~1.086)
    UA 0.004 0.002 5.046 0.025 1.004(1.001~1.007)
    PGRN 0.007 0.002 19.889 <0.001 1.007(1.004~1.010)
    MCP-1 0.010 0.002 19.682 <0.001 1.010(1.006~1.014)
    CDC42 -0.549 0.173 10.110 0.001 0.578(0.412~0.810)
    下载: 导出CSV

    表 10  AMI多因素logistic回归分析

    Table 10.  Multivariate logistic regression analysis of AMI

    因素 B SE Wald P OR(95%CI)
    AST 0.092 0.043 4.673 0.031 1.097(1.009~1.193)
    PGRN 0.007 0.003 4.537 0.033 1.007(1.001~1.014)
    MCP-1 0.012 0.004 7.724 0.005 1.012(1.004~1.021)
    常量 -21.855 6.866 10.131 0.001 <0.001
    下载: 导出CSV
  • [1]

    GBD 2015 Neurological Disorders Collaborator Group. Global, regional, and national burden of neurological disorders during 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015[J]. Lancet Neurol, 2017, 16(11): 877-897. doi: 10.1016/S1474-4422(17)30299-5

    [2]

    中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2022概要[J]. 中国循环杂志, 2023, 38(6): 583-612. https://www.cnki.com.cn/Article/CJFDTOTAL-XIXG202304001.htm

    [3]

    Wang H, Liu Z, Shao J, et al. Immune and inflammation in acute coronary syndrome: molecular mechanisms and therapeutic implications[J]. J Immunol Res, 2020, 2020: 4904217.

    [4]

    Tajbakhsh A, Rezaee M, Kovanen PT, et al. Efferocytosis in atherosclerotic lesions: Malfunctioning regulatory pathways and control mechanisms[J]. Pharmacol Ther, 2018, 188(1): 12-25.

    [5]

    Thygesen K, Alpert JS, Jaffe AS, et al. Fourth universal definition of myocardial infarction(2018)[J]. Glob Heart, 2018, 13(4): 305-338. doi: 10.1016/j.gheart.2018.08.004

    [6]

    Tian R, Li Y, Yao X. PGRN suppresses inflammation and promotes autophagy in keratinocytes through the wnt/β-catenin signaling pathway[J]. Inflammation, 2016, 39(4): 1387-1394. doi: 10.1007/s10753-016-0370-y

    [7]

    Wei F, Zhang Y, Jian J, et al. PGRN protects against colitis progression in mice in an IL-10 and TNFR2 dependent manner[J]. Sci Rep, 2014, 4: 7023. doi: 10.1038/srep07023

    [8]

    de Jager SC, Pasterkamp G. Crosstalk of lipids and inflammation in atherosclerosis: the PRO of PGRN?[J]. Cardiovasc Res, 2013, 100(1): 4-6. doi: 10.1093/cvr/cvt199

    [9]

    Kawase R, Ohama T, Matsuyama A, et al. Deletion of progranulin exacerbates atherosclerosis in ApoE knockout mice[J]. Cardiovasc Res, 2013, 100(1): 125-133. doi: 10.1093/cvr/cvt178

    [10]

    王家杰, 王永祥, 彭瑜, 等. 血浆颗粒蛋白前体与急性冠状动脉综合征的相关性研究[J]. 临床心血管病杂志, 2021, 37(12): 1090-1094. https://lcxxg.whuhzzs.com/article/doi/10.13201/j.issn.1001-1439.2021.12.005

    [11]

    Singh S, Anshita D, Ravichandiran V. MCP-1: Function, regulation, and involvement in disease[J]. Int Immunopharmacol, 2021, 101(2): 107598.

    [12]

    Li J, Guo Y, Luan X, et al. Independent roles of monocyte chemoattractant protein-1, regulated on activation, normal T-cell expressed and secreted and fractalkine in the vulnerability of coronary atherosclerotic plaques[J]. Circ J, 2012, 76(9): 2167-2173. doi: 10.1253/circj.CJ-11-1457

    [13]

    迟正媛, 武维恒. Cdc42在缺血再灌注损伤中对内皮细胞凋亡的影响及其机制[J]. 中华全科医学, 2013, 11(9): 1334-1335. https://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201309004.htm

    [14]

    唐碧, 徐庆梅, 朱飞宇, 等. Cdc42及YAP检测对非瓣膜性心房颤动诊断的相关性研究[J]. 蚌埠医学院学报, 2021, 46(10): 1349-1353. https://www.cnki.com.cn/Article/CJFDTOTAL-BANG202110007.htm

    [15]

    Ito TK, Yokoyama M, Yoshida Y, et al. A crucial role for CDC42 in senescence-associated inflammation and atherosclerosis[J]. PLoS One, 2014, 9(7): e102186. doi: 10.1371/journal.pone.0102186

    [16]

    Flentje A, Kalsi R, Monahan TS. Small Gtpases and their role in vascular disease[J]. Int J Mol Sci, 2019, 20(4): 110.

    [17]

    Zhou M, Wu J, Tan G. The relation of circulating cell division cycle 42 expression with Th1, Th2, and Th17 cells, adhesion molecules, and biochemical indexes in coronary heart disease patients[J]. Ir J Med Sci, 2022, 191(5): 2085-2090. doi: 10.1007/s11845-021-02836-4

    [18]

    Zhou T, Chen Y, Zhang S, et al. Serum progranulin as a risk predictor in patients with acute myocardial infarction[J]. Med Sci Monit, 2021, 27: e928864.

    [19]

    Ding M, Li M, Yang H. Clinical diagnostic value of combined detection of IMA, D-D and MCP-1 in acute myocardial infarction[J]. Exp Ther Med, 2021, 21(5): 457. doi: 10.3892/etm.2021.9888

    [20]

    Wang W, Liu Q, Wang Y, et al. Integration of gene expression profile data of human epicardial adipose tissue from coronary artery disease to verification of hub genes and pathways[J]. Biomed Res Int, 2019, 2019: 8567306.

    [21]

    Tian D, Qin Q, Liu R, et al. Diagnostic value of circulating progranulin and its receptor EphA2 in predicting the atheroma burden in patients with coronary artery disease[J]. Dis Markers, 2021, 2021: 6653501.

    [22]

    Guo F, Sha Y, Hu B, et al. Corrigendum: correlation of long non-coding RNA LncRNA-FA2H-2 with inflammatory markers in the peripheral blood of patients with coronary heart disease[J]. Front Cardiovasc Med, 2021, 8: 799848. doi: 10.3389/fcvm.2021.799848

    [23]

    Feng Q, Guo J, Hou A, et al. The clinical role of serum cell division control 42 in coronary heart disease[J]. Scand J Clin Lab Invest, 2023, 83(1): 45-50. doi: 10.1080/00365513.2022.2164518

    [24]

    Chen X, Chang J, Deng Q, et al. Progranulin does not bind tumor necrosis factor(TNF)receptors and is not a direct regulator of TNF-dependent signaling or bioactivity in immune or neuronal cells[J]. J Neurosci, 2013, 33(21): 9202-9213. doi: 10.1523/JNEUROSCI.5336-12.2013

    [25]

    Schmitz T, Harmel E, Heier M, et al. Inflammatory plasma proteins predict short-term mortality in patients with an acute myocardial infarction[J]. J Transl Med, 2022, 20(1): 457. doi: 10.1186/s12967-022-03644-9

    [26]

    Verma MK, Jaiswal A, Sharma P, et al. Oxidative stress and biomarker of TNF-α, MDA and FRAP in hypertension[J]. J Med Life, 2019, 12(3): 253-259. doi: 10.25122/jml-2019-0031

    [27]

    Zernecke A, Weber C. Chemokines in the vascular inflammatory response of atherosclerosis[J]. Cardiovasc Res, 2010, 86(2): 192-201. doi: 10.1093/cvr/cvp391

    [28]

    Gonzalez-Quesada C, Frangogiannis NG. Monocyte chemoattractant protein-1/CCL2 as a biomarker in acute coronary syndromes[J]. Curr Atheroscler Rep, 2009, 11(2): 131-138. doi: 10.1007/s11883-009-0021-y

    [29]

    Li J, Zhao Z, Jiang H, et al. Predictive value of elevated alanine aminotransferase for in-hospital mortality in patients with acute myocardial infarction[J]. BMC Cardiovasc Disord, 2021, 21(1): 82. doi: 10.1186/s12872-021-01903-z

  • 加载中
计量
  • 文章访问数:  1013
  • PDF下载数:  262
  • 施引文献:  0
出版历程
收稿日期:  2024-04-12
刊出日期:  2024-08-13

目录