炎症及相关信号通路在动脉粥样硬化中的研究进展

张文鸿, 崔璟, 刘嘉敏, 等. 炎症及相关信号通路在动脉粥样硬化中的研究进展[J]. 临床心血管病杂志, 2024, 40(10): 845-852. doi: 10.13201/j.issn.1001-1439.2024.10.013
引用本文: 张文鸿, 崔璟, 刘嘉敏, 等. 炎症及相关信号通路在动脉粥样硬化中的研究进展[J]. 临床心血管病杂志, 2024, 40(10): 845-852. doi: 10.13201/j.issn.1001-1439.2024.10.013
ZHANG Wenhong, CUI Jing, LIU Jiamin, et al. Advancements in the study of inflammation and associated signaling pathways in atherosclerosis[J]. J Clin Cardiol, 2024, 40(10): 845-852. doi: 10.13201/j.issn.1001-1439.2024.10.013
Citation: ZHANG Wenhong, CUI Jing, LIU Jiamin, et al. Advancements in the study of inflammation and associated signaling pathways in atherosclerosis[J]. J Clin Cardiol, 2024, 40(10): 845-852. doi: 10.13201/j.issn.1001-1439.2024.10.013

炎症及相关信号通路在动脉粥样硬化中的研究进展

  • 基金项目:
    国家重点研发计划(No: 2022YFA1104300); 北京市自然科学基金项目(No: 7222183); 安徽省研究生质量工程项目(No: 2022xscx054)
详细信息

Advancements in the study of inflammation and associated signaling pathways in atherosclerosis

More Information
  • 炎症被认为在动脉粥样硬化(atherosclerosis,AS)的发生和发展中扮演着关键角色。AS的抗炎治疗已经成为一种具有前景的治疗策略。本文详细探讨了AS与炎症及相关信号通路的关系,介绍了当前针对AS的抗炎治疗策略和未来的研究方向,为深入研究AS抗炎治疗提供参考。
  • 加载中
  • [1]

    Hansson GK. Inflammation and immune response in atherosclerosis[J]. Curr Atheroscler Rep, 1999, 1(2): 150-155. doi: 10.1007/s11883-999-0011-0

    [2]

    Zhu Y, Xian X, Wang Z, et al. Research progress on the relationship between atherosclerosis and inflammation[J]. Biomolecules, 2018, 8(3): 80. doi: 10.3390/biom8030080

    [3]

    Shah P, Bajaj S, Virk H, et al. Rapid progression of coronary atherosclerosis: a review[J]. Thrombosis, 2015, 2015: 634983.

    [4]

    Wu MY, Li CJ, Hou MF, et al. New insights into the role of inflammation in the pathogenesis of atherosclerosis[J]. Int J Mol Sci, 2017, 18(10): 2034. doi: 10.3390/ijms18102034

    [5]

    Zhang K, Huang XZ, Li XN, et al. Interleukin 6 destabilizes atherosclerotic plaques by downregulating prolyl-4-hydroxylase α1 via a mitogen-activated protein kinase and c-Jun pathway[J]. Arch Biochem Biophys, 2012, 528(2): 127-133. doi: 10.1016/j.abb.2012.09.007

    [6]

    Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease[J]. N Engl J Med, 2017, 377(12): 1119-1131. doi: 10.1056/NEJMoa1707914

    [7]

    Eberhardt N, Giannarelli C. How single-cell technologies have provided new insights into atherosclerosis[J]. Arterioscler Thromb Vasc Biol, 2022, 42(3): 243-252. doi: 10.1161/ATVBAHA.121.315849

    [8]

    Kong P, Cui ZY, Huang XF, et al. Inflammation and atherosclerosis: signaling pathways and therapeutic intervention[J]. Signal Transduct Target Ther, 2022, 7(1): 131. doi: 10.1038/s41392-022-00955-7

    [9]

    Nguyen M, Fernando S, Schwarz N, et al. Inflammation as a therapeutic target in atherosclerosis[J]. J Clin Med, 2019, 8(8): 1109. doi: 10.3390/jcm8081109

    [10]

    Willemsen L, de Winther MP. Macrophage subsets in atherosclerosis as defined by single-cell technologies[J]. J Pathol, 2020, 250(5): 705-714. doi: 10.1002/path.5392

    [11]

    Gianopoulos I, Daskalopoulou SS. Macrophage profiling in atherosclerosis: understanding the unstable plaque[J]. Basic Res Cardiol, 2024, 119(1): 35-56. doi: 10.1007/s00395-023-01023-z

    [12]

    Cole SL, Dunning J, Kok WL, et al. M1-like monocytes are a major immunological determinant of severity in previously healthy adults with life-threatening influenza[J]. JCI Insight, 2017, 2(7): e91868. doi: 10.1172/jci.insight.91868

    [13]

    Stöger JL, Gijbels MJJ, van der Velden S, et al. Distribution of macrophage polarization markers in human atherosclerosis[J]. Atherosclerosis, 2012, 225(2): 461-468. doi: 10.1016/j.atherosclerosis.2012.09.013

    [14]

    Colin S, Chinetti-Gbaguidi G, Staels B. Macrophage phenotypes in atherosclerosis[J]. Immunol Rev, 2014, 262(1): 153-166. doi: 10.1111/imr.12218

    [15]

    Cochain C, Zernecke A. Macrophages in vascular inflammation and atherosclerosis[J]. Pflugers Arch, 2017, 469(3-4): 485-499. doi: 10.1007/s00424-017-1941-y

    [16]

    Cui Y, Zhu Q, Hao H, et al. N-Acetylcysteine and atherosclerosis: promises and challenges[J]. Antioxidants(Basel), 2023, 12(12): 2073.

    [17]

    Libby P, Tabas I, Fredman G, et al. Inflammation and its resolution as determinants of acute coronary syndromes[J]. Circ Res, 2014, 114(12): 1867-1879. doi: 10.1161/CIRCRESAHA.114.302699

    [18]

    Jin Y, Fu J. Novel insights into the NLRP 3 inflammasome in atherosclerosis[J]. J Am Heart Assoc, 2019, 8(12): e012219. doi: 10.1161/JAHA.119.012219

    [19]

    Cai J, Tan X, Hu Q, et al. Flavonoids and gastric cancer therapy: from signaling pathway to therapeutic significance[J]. Drug Des Devel Ther, 2024, 18: 3233-3253. doi: 10.2147/DDDT.S466470

    [20]

    Whitman SC, Ravisankar P, Daugherty A. Interleukin-18 enhances atherosclerosis in apolipoprotein E(-/-)mice through release of interferon-gamma[J]. Circ Res, 2002, 90(2): E34-38.

    [21]

    Franchi L, Muñoz-Planillo R, Núñez G. Sensing and reacting to microbes through the inflammasomes[J]. Nat Immunol, 2012, 13(4): 325-332. doi: 10.1038/ni.2231

    [22]

    Duewell P, Kono H, Rayner KJ, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals[J]. Nature, 2010, 464(7293): 1357-1361. doi: 10.1038/nature08938

    [23]

    王敢, 钟江华. NLRP3炎性小体在慢性心力衰竭中的作用与机制[J]. 临床心血管病杂志, 2023, 39(8): 591-596. https://lcxxg.whuhzzs.com/article/doi/10.13201/j.issn.1001-1439.2023.08.005

    [24]

    Kirii H, Niwa T, Yamada Y, et al. Lack of interleukin-1beta decreases the severity of atherosclerosis in ApoE-deficient mice[J]. Arterioscler Thromb Vasc Biol, 2003, 23(4): 656-660. doi: 10.1161/01.ATV.0000064374.15232.C3

    [25]

    Chamberlain J, Evans D, King A, et al. Interleukin-1beta and signaling of interleukin-1 in vascular wall and circulating cells modulates the extent of neointima formation in mice[J]. Am J Pathol, 2006, 168(4): 1396-1403. doi: 10.2353/ajpath.2006.051054

    [26]

    Almohammai A, Rahbarghazi R, Keyhanmanesh R, et al. Asthmatic condition induced the activity of exosome secretory pathway in rat pulmonary tissues[J]. J Inflamm(Lond), 2021, 18(1): 14. doi: 10.1186/s12950-021-00275-7

    [27]

    Zheng D, Huo M, Li B, et al. The role of exosomes and exosomal MicroRNA in cardiovascular disease[J]. Front Cell Dev Biol, 2020, 8: 616161.

    [28]

    Tkach M, Théry C. Communication by extracellular vesicles: where we are and where we need to go[J]. Cell, 2016, 164(6): 1226-1232. doi: 10.1016/j.cell.2016.01.043

    [29]

    Baruah J, Wary KK. Exosomes in the regulation of vascular endothelial cell regeneration[J]. Front Cell Dev Biol, 2019, 7: 353.

    [30]

    Chen YT, Yuan HX, Ou ZJ, et al. Microparticles(Exosomes)and Atherosclerosis[J]. Curr Atheroscler Rep, 2020, 22(6): 23. doi: 10.1007/s11883-020-00841-z

    [31]

    Zhan R, Leng X, Liu X, et al. Heat shock protein 70 is secreted from endothelial cells by a non-classical pathway involving exosomes[J]. Biochem Biophys Res Commun, 2009, 387(2): 229-233. doi: 10.1016/j.bbrc.2009.06.095

    [32]

    Bäck M, Yurdagul A Jr, Tabas I, et al. Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities[J]. Nat Rev Cardiol, 2019, 16(7): 389-406.

    [33]

    Jiao Y, Zhang T, Zhang C, et al. Exosomal miR-30 d-5p of neutrophils induces M1 macrophage polarization and primes macrophage pyroptosis in sepsis-related acute lung injury[J]. Crit Care, 2021, 25(1): 356. doi: 10.1186/s13054-021-03775-3

    [34]

    Robinson KS, Toh GA, Rozario P, et al. ZAKα-driven ribotoxic stress response activates the human NLRP1 inflammasome[J]. Science, 2022, 377(6603): 328-335. doi: 10.1126/science.abl6324

    [35]

    He X, Fan X, Bai B, et al. Pyroptosis is a critical immune-inflammatory response involved in atherosclerosis[J]. Pharmacol Res, 2021, 165: 105447. doi: 10.1016/j.phrs.2021.105447

    [36]

    Zahid M, Rogowski M, Ponce C, et al. CCAAT/enhancer-binding protein beta(C/EBPβ)knockdown reduces inflammation, ER stress, and apoptosis, and promotes autophagy in oxLDL-treated RAW264.7 macrophage cells[J]. Mol Cell Biochem, 2020, 463(1-2): 211-223. doi: 10.1007/s11010-019-03642-4

    [37]

    Chen S, Zuo Y, Huang L, et al. The MC4 receptor agonist RO27-3225 inhibits NLRP1-dependent neuronal pyroptosis via the ASK1/JNK/p38 MAPK pathway in a mouse model of intracerebral haemorrhage[J]. Br J Pharmacol, 2019, 176(9): 1341-1356. doi: 10.1111/bph.14639

    [38]

    Su J, Zhou H, Liu X, et al. oxLDL antibody inhibits MCP-1 release in monocytes/macrophages by regulating Ca2+ /K+ channel flow[J]. J Cell Mol Med, 2017, 21(5): 929-940. doi: 10.1111/jcmm.13033

    [39]

    Zhan X, Li Q, Xu G, et al. The mechanism of NLRP3 inflammasome activation and its pharmacological inhibitors[J]. Front Immunol, 2022, 13: 1109938.

    [40]

    Wang Y, Shi P, Chen Q, et al. Mitochondrial ROS promote macrophage pyroptosis by inducing GSDMD oxidation[J]. J Mol Cell Biol, 2019, 11(12): 1069-1082. doi: 10.1093/jmcb/mjz020

    [41]

    Ahmadi A, Argulian E, Leipsic J, et al. From subclinical atherosclerosis to plaque progression and acute coronary events: JACC State-of-the-Art Review[J]. J Am Coll Cardiol, 2019, 74(12): 1608-1617. doi: 10.1016/j.jacc.2019.08.012

    [42]

    Khan R, Rheaume E, Tardif JC. Examining the role of and treatment directed at IL-1β in atherosclerosis[J]. Curr Atheroscler Rep, 2018, 20(11): 53. doi: 10.1007/s11883-018-0754-6

    [43]

    Wu Q, He X, Wu LM, et al. MLKL Aggravates Ox-LDL-induced cell pyroptosis via activation of NLRP3 inflammasome in human umbilical vein endothelial cells[J]. Inflammation, 2020, 43(6): 2222-2231. doi: 10.1007/s10753-020-01289-8

    [44]

    Huang P, Liu W, Chen J, et al. TRIM31 inhibits NLRP3 inflammasome and pyroptosis of retinal pigment epithelial cells through ubiquitination of NLRP3[J]. Cell Biol Int, 2020, 44(11): 2213-2219.

    [45]

    Schuett H, Oestreich R, Waetzig GH, et al. Transsignaling of interleukin-6 crucially contributes to atherosclerosis in mice[J]. Arterioscler Thromb Vasc Biol, 2012, 32(2): 281-290.

    [46]

    Luo P, Wang Y, Zhao C, et al. Bazedoxifene exhibits anti-inflammation and anti-atherosclerotic effects via inhibition of IL-6/IL-6R/STAT3 signaling[J]. Eur J Pharmacol, 2021, 893: 173822.

    [47]

    Attiq A, Jalil J, Husain K, et al. A new prenylated benzoquinone from Cyathocalyx pruniferus abrogates LPS-induced inflammatory responses associated with PGE2, COX-2 and cytokines biosynthesis in human plasma[J]. Inflammopharmacology, 2021, 29(3): 841-854.

    [48]

    Attiq A, Jalil J, Husain K, et al. Luteolin and apigenin derived glycosides from Alphonsea elliptica abrogate LPS-induced inflammatory responses in human plasma[J]. J Ethnopharmacol, 2021, 275: 114120.

    [49]

    Jalil J, Attiq A, Hui CC, et al. Modulation of inflammatory pathways, medicinal uses and toxicities of Uvaria species: potential role in the prevention and treatment of inflammation[J]. Inflammopharmacology, 2020, 28(5): 1195-1218.

    [50]

    Kabat AM, Pearce EJ. Inflammation by way of macrophage metabolism[J]. Science, 2017, 356(6337): 488-489.

    [51]

    Han X, Boisvert WA. Interleukin-10 protects against atherosclerosis by modulating multiple atherogenic macrophage function[J]. Thromb Haemost, 2015, 113(3): 505-512.

    [52]

    Gao M, Tang M, Ho W, et al. Modulating plaque inflammation via targeted mRNA nanoparticles for the treatment of atherosclerosis[J]. ACS Nano, 2023, 17(18): 17721-17739.

    [53]

    Barcelos A, de Oliveira EA, Haute GV, et al. Association of IL-10 to coronary disease severity in patients with metabolic syndrome[J]. Clin Chim Acta, 2019, 495: 394-398.

    [54]

    Seljeflot I, Hurlen M, Solheim S, et al. Serum levels of interleukin-10 are inversely related to future events in patients with acute myocardial infarction[J]. J Thromb Haemost, 2004, 2(2): 350-352.

    [55]

    Fu Y, Wu Y, Liu E. C-reactive protein and cardiovascular disease: From animal studies to the clinic(Review)[J]. Exp Ther Med, 2020, 20(2): 1211-1219.

    [56]

    Duman H, Çinier G, Bakırcı EM, et al. Relationship between c-reactive protein to albumin ratio and thrombus burden in patients with acute coronary syndrome[J]. Clin Appl Thromb Hemost, 2019, 25: 1076029618824418.

    [57]

    Liu H, Yao Y, Wang Y, et al. Association between high-sensitivity C-reactive protein, lipoprotein-associated phospholipase A2 and carotid atherosclerosis: A cross-sectional study[J]. J Cell Mol Med, 2018, 22(10): 5145-5150.

    [58]

    Xiang Q, Tian F, Xu J, et al. New insight into dyslipidemia-induced cellular senescence in atherosclerosis[J]. Biol Rev Camb Philos Soc, 2022, 97(5): 1844-1867.

    [59]

    Esse R, Barroso M, Tavares De Almeida I, et al. The contribution of homocysteine metabolism disruption to endothelial dysfunction: state-of-the-art[J]. Int J Mol Sci, 2019, 20(4): 867.

    [60]

    Browning KL, Lind TK, Maric S, et al. Effect of bilayer charge on lipoprotein lipid exchange[J]. Colloids Surf B Biointerfaces, 2018, 168: 117-125.

    [61]

    Zhu W, Liang W, Lu H, et al. Myeloid TM6SF2 deficiency inhibits atherosclerosis[J]. Cells, 2022, 11(18): 2877.

    [62]

    Kim BK, Hong SJ, Lee YJ, et al. Long-term efficacy and safety of moderate-intensity statin with ezetimibe combination therapy versus high-intensity statin monotherapy in patients with atherosclerotic cardiovascular disease(RACING): a randomised, open-label, non-inferiority trial[J]. Lancet, 2022, 400(10349): 380-390.

    [63]

    Chen PYF, Ho CT, Shahidi F, et al. Potential effects of natural dietary compounds on trimethylamine Noxide(TMAO)formation and TMAO-induced atherosclerosis[J]. JFB, 2018, 3: 87-94.

    [64]

    Boini KM, Puchchakayala G, Zhang Y, et al. TMAO activates carotid endothelial inflammasomes leading to enhanced neointimal formation in NLRP3 Mice[J]. The FASEB, 2020, 34(S1): 1-2.

    [65]

    Zhou Z, Jin H, Ju H, et al. Circulating trimethylamine-N-Oxide and risk of all-cause and cardiovascular mortality in patients with chronic kidney disease: a systematic review and meta-analysis[J]. Front Med(Lausanne), 2022, 9: 828343.

    [66]

    Hu J, Xu J, Shen S, et al. Trimethylamine N-Oxide promotes abdominal aortic aneurysm formation by aggravating aortic smooth muscle cell senescence in mice[J]. J Cardiovasc Transl Res, 2022, 15(5): 1064-1074.

    [67]

    Singh GB, Zhang Y, Boini KM, et al. High mobility group box 1 mediates TMAO-induced endothelial dysfunction[J]. Int J Mol Sci, 2019, 20(14): 3570.

    [68]

    Park MH, Hong JT. Roles of NF-κB in cancer and inflammatory diseases and their therapeutic approaches[J]. Cells, 2016, 5(2): 15.

    [69]

    Sun X, He S, Wara A, et al. Systemic delivery of microRNA-181b inhibits nuclear factor-κB activation, vascular inflammation, and atherosclerosis in apolipoprotein E-deficient mice[J]. Circ Res, 2014, 114(1): 32-40.

    [70]

    Ismail SM, Sundar UM, Hui CK, et al. Piper sarmentosum attenuates TNF-α-induced VCAM-1 and ICAM-1 expression in human umbilical vein endothelial cells[J]. J Taibah Univ Med Sci, 2018, 13(3): 225-231.

    [71]

    Wang Y, Cao J, Fan Y, et al. Artemisinin inhibits monocyte adhesion to HUVECs through the NF-κB and MAPK pathways in vitro[J]. Int J Mol Med, 2016, 37(6): 1567-1575.

    [72]

    Imai T, Van TM, Pasparakis M, et al. Smooth muscle cell specific NEMO deficiency inhibits atherosclerosis in ApoE-/-mice[J]. Sci Rep, 2022, 12(1): 12538.

    [73]

    Takeda K, Akira S. Toll-like receptors in innate immunity[J]. Int Immunol, 2005, 17(1): 1-14.

    [74]

    Falck-Hansen M, Kassiteridi C, Monaco C. Toll-like receptors in atherosclerosis[J]. Int J Mol Sci, 2013, 14(7): 14008-14023.

    [75]

    Kramer CD, Genco CA. Microbiota, immune subversion, and chronic inflammation[J]. Front Immunol, 2017, 8: 255.

    [76]

    Chen S, Shimada K, Crother TR, et al. Chlamydia and lipids engage a common signaling pathway that promotes atherogenesis[J]. J Am Coll Cardiol, 2018, 71(14): 1553-1570.

    [77]

    Choi SH, Harkewicz R, Lee JH, et al. Lipoprotein accumulation in macrophages via toll-like receptor-4-dependent fluid phase uptake[J]. Circ Res, 2009, 104(12): 1355-1363.

    [78]

    Li H, Hong F, Pan S, et al. Silencing triggering receptors expressed on myeloid cells-1 impaired the inflammatory response to oxidized low-density lipoprotein in macrophages[J]. Inflammation, 2016, 39(1): 199-208.

    [79]

    Xu S, Jin T, Weng J. Endothelial cells as a key cell type for innate immunity: a focused review on RIG-I signaling pathway[J]. Front Immunol, 2022, 13: 951614.

    [80]

    Kanter JE, Kramer F, Barnhart S, et al. A novel strategy to prevent advanced atherosclerosis and lower blood glucose in a mouse model of metabolic syndrome[J]. Diabetes, 2018, 67(5): 946-959.

    [81]

    Reustle A, Torzewski M. Role of p38 MAPK in atherosclerosis and aortic valve sclerosis[J]. Int J Mol Sci, 2018, 19(12): 3761.

    [82]

    Leyane TS, Jere SW, Houreld NN. Cellular signalling and photobiomodulation in chronic wound repair[J]. Int J Mol Sci, 2021, 22(20): 11223.

    [83]

    Jiang Q, Chen Q, Li C, et al. ox-LDL-induced endothelial progenitor cell oxidative stress via p38/Keap1/Nrf2 Pathway[J]. Stem Cells Int, 2022, 2022: 5897194.

    [84]

    Papaconstantinou J. The role of signaling pathways of inflammation and oxidative stress in development of senescence and aging phenotypes in cardiovascular disease[J]. Cells, 2019, 8(11): 1383.

    [85]

    Zeng X, Deng X, Ni Y, et al. LPS inhibits TRIM65 expression in macrophages and C57BL/6J mouse by activating the ERK1/2 signaling pathway[J]. Exp Ther Med, 2023, 25(4): 188.

    [86]

    Tian L, Huang CK, Ding F, et al. Galectin-3 mediates thrombin-induced vascular smooth muscle cell migration[J]. Front Cardiovasc Med, 2021, 8: 686200.

    [87]

    Miller B, Sewell-Loftin MK. Mechanoregulation of vascular endothelial growth factor receptor 2 in angiogenesis[J]. Front Cardiovasc Med, 2021, 8: 804934.

    [88]

    Zhao TT, Liu JJ, Zhu J, et al. SDF-1/CXCR4-mediated stem cell mobilization involved in cardioprotective effects of electroacupuncture on mouse with myocardial infarction[J]. Oxid Med Cell Longev, 2022, 2022: 4455183.

    [89]

    Luo JW, Hu Y, Liu J, et al. Interleukin-22: a potential therapeutic target in atherosclerosis[J]. Mol Med, 2021, 27(1): 88.

    [90]

    Cai D, Liu H, Wang J, et al. Balasubramide derivative 3C attenuates atherosclerosis in apolipoprotein E-deficient mice: role of AMPK-STAT1-STING signaling pathway[J]. Aging(Albany NY), 2021, 13(8): 12160-12178.

    [91]

    Wang J, Bai X, Song Q, et al. miR-223 inhibits lipid deposition and inflammation by suppressing Toll-Like receptor 4 signaling in macrophages[J]. Int J Mol Sci, 2015, 16(10): 24965-24982.

    [92]

    Yost CC, Weyrich AS, Zimmerman GA. The platelet activating factor(PAF)signaling cascade in systemic inflammatory responses[J]. Biochimie, 2010, 92(6): 692-697.

    [93]

    Ma J, Wei K, Liu J, et al. Glycogen metabolism regulates macrophage-mediated acute inflammatory responses[J]. Nat Commun, 2020, 11(1): 1769.

    [94]

    Bargieł W, Cierpiszewska K, Maruszczak K, et al. Recognized and potentially new biomarkers—their role in diagnosis and prognosis of cardiovascular disease[J]. Medicina, 2021, 57(7): 701.

    [95]

    Ridker PM, Devalaraja M, Baeres F, et al. IL-6 inhibition with ziltivekimab in patients at high atherosclerotic risk(RESCUE): a double-blind, randomised, placebo-controlled, phase 2 trial[J]. Lancet, 2021, 397(10289): 2060-2069.

    [96]

    Hemenway G, Frishman WH. Therapeutic implications of NLRP3-mediated inflammation in coronary artery disease[J]. Cardiol Rev, 2022, 30(2): 90-99.

    [97]

    Tardif JC, Kouz S, Waters DD, et al. Efficacy and safety of low-dose colchicine after myocardial infarction[J]. N Engl J Med, 2019, 381(26): 2497-2505.

    [98]

    Nidorf SM, Eikelboom JW, Budgeon CA, et al. Low-dose colchicine for secondary prevention of cardiovascular disease[J]. J Am Coll Cardiol, 2013, 61(4): 404-410.

    [99]

    Li K, Ching D, Luk FS, et al. Apolipoprotein E enhances microRNA-146a in monocytes and macrophages to suppress nuclear factor-κB-driven inflammation and atherosclerosis[J]. Circ Res, 2015, 117(1): e1-e11.

    [100]

    Feng M, Xu D, Wang L. miR-26a inhibits atherosclerosis progression by targeting TRPC3[J]. Cell Biosci, 2018, 8: 4.

    [101]

    Zhang N, Zhang D, Zhang Q, et al. Mechanism of Danggui Sini underlying the treatment of peripheral nerve injury based on network pharmacology and molecular docking: A review[J]. Medicine(Baltimore), 2023, 102(19): e33528.

    [102]

    Wang A, Li Z, Zhuo S, et al. Mechanisms of cardiorenal protection with SGLT2 inhibitors in patients with T2DM based on network pharmacology[J]. Front Cardiovasc Med, 2022, 9: 857952.

    [103]

    Sun T, Quan W, Peng S, et al. Network pharmacology-based strategy combined with molecular docking and in vitro validation study to explore the underlying mechanism of Huo Luo Xiao Ling Dan in treating atherosclerosis[J]. Drug Des Devel Ther, 2022, 16: 1621-1645.

    [104]

    Zhang X, Qin Y, Ruan W, et al. Targeting inflammation-associated AMPK//Mfn-2/MAPKs signaling pathways by baicalein exerts anti-atherosclerotic action[J]. Phytother Res, 2021, 35(8): 4442-4455.

  • 加载中
计量
  • 文章访问数:  1736
  • PDF下载数:  1057
  • 施引文献:  0
出版历程
收稿日期:  2024-03-06
刊出日期:  2024-10-13

目录