NLRP3炎性小体在慢性心力衰竭中的作用与机制

王敢, 钟江华. NLRP3炎性小体在慢性心力衰竭中的作用与机制[J]. 临床心血管病杂志, 2023, 39(8): 591-596. doi: 10.13201/j.issn.1001-1439.2023.08.005
引用本文: 王敢, 钟江华. NLRP3炎性小体在慢性心力衰竭中的作用与机制[J]. 临床心血管病杂志, 2023, 39(8): 591-596. doi: 10.13201/j.issn.1001-1439.2023.08.005
WANG Gan, ZHONG Jianghua. The role and mechanism of NLRP3 inflammasome in chronic heart failure[J]. J Clin Cardiol, 2023, 39(8): 591-596. doi: 10.13201/j.issn.1001-1439.2023.08.005
Citation: WANG Gan, ZHONG Jianghua. The role and mechanism of NLRP3 inflammasome in chronic heart failure[J]. J Clin Cardiol, 2023, 39(8): 591-596. doi: 10.13201/j.issn.1001-1439.2023.08.005

NLRP3炎性小体在慢性心力衰竭中的作用与机制

  • 基金项目:
    海南省重点研发项目(No: ZDYF2019134); 海南省自然基金资助项目(No: 2018CXTD349)
详细信息

The role and mechanism of NLRP3 inflammasome in chronic heart failure

More Information
  • 慢性心力衰竭(chronic heart failure,CHF)是各类心血管疾病的终末期阶段。CHF的治疗方案近年虽不断完善,但仍有较高的死亡率与住院率,给患者及家庭带来了巨大的医疗负担。CHF的具体机制目前尚未完全明确,寻找CHF发生发展的病理生理机制及相关治疗靶点迫在眉睫。已知炎症在CHF的发展中起着重要作用,而NLRP3炎性小体可能在其中起重要的桥梁与驱动作用。但在CHF的发展过程中,不同病理条件下的NLRP3炎性小体激活机制有所差异。并且激活后的NLRP3炎性小体对不同的细胞可产生不同的病理作用。了解NLRP3炎性小体的激活机制及其在CHF中的作用或许可为CHF提供新的治疗靶点。本文就NLRP3炎性小体在CHF发生发展中的作用、机制及相关治疗作一综述。
  • 加载中
  • 图 1  不同病理模型下NLRP3炎性小体的激活方式

    Figure 1.  Activation of NLRP3 inflammasome in different pathological models

    图 2  NLRP3炎性小体对不同细胞产生不同影响

    Figure 2.  NLRP3 inflammasome has different effects on different cells

  • [1]

    Savarese G, Lund LH. Global public health burden of heart failure[J]. Card Fail Rev, 2017, 3(1): 7-11. doi: 10.15420/cfr.2016:25:2

    [2]

    Groenewegen A, Rutten FH, Mosterd A, et al. Epidemiology of heart failure[J]. Euro J Heart Fail, 2020, 22(8): 1342-1356. doi: 10.1002/ejhf.1858

    [3]

    Castillo EC, Vázquez-Garza E, Yee-Trejo D, et al. What is the role of the inflammation in the pathogenesis of heart failure?[J]. Curr Cardiol Rep, 2020, 22(11): 139. doi: 10.1007/s11886-020-01382-2

    [4]

    Murphy SP, Kakkar R, McCarthy CP, et al. Inflammation in heart failure: JACC State-of-the-Art Review[J]. J Am Coll Cardiol, 2020, 75(11): 1324-1340.

    [5]

    Zhong J, Shi G. Regulation of inflammation in chronic disease[J]. Frontiers in Immunology, 2019, 10: 737. doi: 10.3389/fimmu.2019.00737

    [6]

    李建军, 杨进刚. "融合"学说: 胆固醇, 炎症与动脉粥样硬化的新视野[J]. 临床心血管病杂志, 2022, 38(4): 265-266. https://lcxxg.whuhzzs.com/article/doi/10.13201/j.issn.1001-1439.2022.04.002

    [7]

    Mesquita T, Lin YN, Ibrahim A. Chronic low-grade inflammation in heart failure withpreserved ejection fraction[J]. Aging Cell, 2021, 20(9): e13453.

    [8]

    Huang Y, Xu W, Zhou R. NLRP3 inflammasome activation and cell death[J]. Cell Mol Immunol, 2021, 18(9): 2114-2127. doi: 10.1038/s41423-021-00740-6

    [9]

    Paik S, Kim JK, Silwal P, et al. An update on the regulatory mechanisms of NLRP3 inflammasome activation[J]. Cell Mol Immunol, 2021, 18(5): 1141-1160. doi: 10.1038/s41423-021-00670-3

    [10]

    Suetomi T, Willeford A, Brand CS, et al. Inflammation and NLRP3 inflammasome activation initiated in response to pressure overload by Ca2+/Calmodulin-dependent protein kinase Ⅱ δ signaling in cardiomyocytes are essential for adverse cardiac remodeling[J]. Circulation, 2018, 138(22): 2530-2544. doi: 10.1161/CIRCULATIONAHA.118.034621

    [11]

    Willeford A, Suetomi T, Nickle A, et al. CaMKIIδ-mediated inflammatory gene expression and inflammasome activation in cardiomyocytes initiate inflammation and induce fibrosis[J]. JCI Insight, 2018, 3(12): 111.

    [12]

    Marchetti C, Toldo S, Chojnacki J, et al. Pharmacologic Inhibition of the NLRP3 Inflammasome Preserves Cardiac Function After Ischemic and Nonischemic Injury in the Mouse[J]. J Cardiovasc Pharmacol, 2015, 66(1): 1-8. doi: 10.1097/FJC.0000000000000247

    [13]

    Segiet OA, Piecuch A, Mielanczyk L, et al. Role of interleukins in heart failure with reduced ejection fraction[J]. Anatol J Cardiol, 2019, 22(6): 287-299.

    [14]

    Baum JR, Long B, Cabo C, et al. Myofibroblasts cause heterogeneous Cx43 reduction and are unlikely to be coupled to myocytes in the healing canine infarct[J]. Am J Physiol Heart Circ Physiol, 2012, 302(3): H790-800. doi: 10.1152/ajpheart.00498.2011

    [15]

    Bracey NA, Beck PL, Muruve DA, et al. The Nlrp3 inflammasome promotes myocardial dysfunction in structural cardiomyopathy through interleukin-1β[J]. Exp Physiol, 2013, 98(2): 462-472. doi: 10.1113/expphysiol.2012.068338

    [16]

    Xiao H, Li H, Wang JJ, et al. IL-18 cleavage triggers cardiac inflammation and fibrosis upon β-adrenergic insult[J]. Eur Heart J, 2018, 39(1): 60-69. doi: 10.1093/eurheartj/ehx261

    [17]

    黄兰松, 刘燕, 黄照河. 细胞焦亡及其在心肌缺血再灌注损伤中作用机制[J]. 临床心血管病杂志, 2021, 35(2): 111-116. https://lcxxg.whuhzzs.com/article/doi/10.13201/j.issn.1001-1439.2021.02.019

    [18]

    Wang Q, Wu J, Zeng Y, et al. Pyroptosis: A pro-inflammatory type of cell death in cardiovascular disease[J]. Clin Chim Acta, 2020, 510: 62-72. doi: 10.1016/j.cca.2020.06.044

    [19]

    Shen S, Wang Z, Sun H, et al. Role of NLRP3 Inflammasome in Myocardial Ischemia-Reperfusion Injury and Ventricular Remodeling[J]. Med Sci Monit, 2022, 28: e934255.

    [20]

    Sharif H, Wang L, Wang WL, et al. Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome[J]. Nature, 2019, 570(7761): 338-343. doi: 10.1038/s41586-019-1295-z

    [21]

    Xu Z, Chen ZM, Wu X, et al. Distinct molecular mechanisms underlying potassium efflux for NLRP3 inflammasome activation[J]. Front Immunol, 2020, 11: 609441. doi: 10.3389/fimmu.2020.609441

    [22]

    Tapia-Abellán A, Angosto-Bazarra D, Alarcón-Vila C, et al. Sensing low intracellular potassium by NLRP3 results in a stable open structure that promotes inflammasome activation[J]. Sci Adv, 2021, 7(38): eabf4468. doi: 10.1126/sciadv.abf4468

    [23]

    Fujiwara M, Matoba T, Koga JI, et al. Nanoparticle incorporating Toll-like receptor 4 inhibitor attenuates myocardial ischaemia-reperfusion injury by inhibiting monocyte-mediated inflammation in mice[J]. Cardiovasc Res, 2019, 115(7): 1244-1255. doi: 10.1093/cvr/cvz066

    [24]

    Song E, Jahng JW, Chong LP, et al. Lipocalin-2 induces NLRP3 inflammasome activation via HMGB1 induced TLR4 signaling in heart tissue of mice under pressure overload challenge[J]. Am J Transl Res, 2017, 9(6): 2723-2735.

    [25]

    Zhang L, Ai C, Bai M, et al. NLRP3 Inflammasome/Pyroptosis: A Key Driving Force in Diabetic Cardiomyopathy[J]. Inter J Mol Sci, 2022, 23(18): 10632.

    [26]

    Sokolova M, Sjaastad I, Louwe MC, et al. NLRP3 Inflammasome Promotes Myocardial Remodeling During Diet-Induced Obesity[J]. Front Immunol, 2019, 10: 1621.

    [27]

    Wei H, Bu R, Yang Q, et al. Exendin-4 protects against hyperglycemia-induced cardiomyocyte Pyroptosis via the AMPK-TXNIP Pathway[J]. J Diabetes Res, 2019, 2019: 8905917.

    [28]

    Ma S, Feng J, Lin X, et al. Nicotinamide riboside alleviates cardiac dysfunction and remodeling in pressure overload cardiac hypertrophy[J]. Oxid Med Cell Longev, 2021, 2021: 5546867. https://pubmed.ncbi.nlm.nih.gov/34567409/

    [29]

    Ren B, Feng J, Yang N, et al. Ginsenoside Rg3 attenuates angiotensin Ⅱ-induced myocardial hypertrophy through repressing NLRP3 inflammasome and oxidative stress via modulating SIRT1/NF-κB pathway[J]. Int Immunopharmacol, 2021, 98: 107841.

    [30]

    Pinar AA, Scott TE, Huuskes BM, et al. Targeting the NLRP3 inflammasome to treat cardiovascular fibrosis[J]. Pharmacol Ther, 2020, 209: 107511. https://pubmed.ncbi.nlm.nih.gov/32097669/

    [31]

    Pinar AA, Scott TE, Huuskes BM, et al. Targeting the NLRP3 inflammasome to treat cardiovascular fibrosis[J]. Pharmacol Ther, 2020, 209: 107511. https://pubmed.ncbi.nlm.nih.gov/32097669/

    [32]

    Bai B, Yang Y, Wang Q, et al. NLRP3 inflammasome in endothelial dysfunction[J]. Cell Death Dis, 2020, 11(9): 776. https://pubmed.ncbi.nlm.nih.gov/32948742/

    [33]

    Ding K, Song C, Hu H, et al. The Role of NLRP3 Inflammasome in Diabetic Cardiomyopathy and Its Therapeutic Implications[J]. Oxid Med Cell Longev, 2022, 2022: 3790721.

    [34]

    Wang Y, Liu X, Shi H, et al. NLRP3 inflammasome, an immune-inflammatory target in pathogenesis and treatment of cardiovascular diseases[J]. Clin Transl Med, 2020, 10(1): 91-106. https://pubmed.ncbi.nlm.nih.gov/32508013/

    [35]

    Bakhshi S, Shamsi S. MCC950 in the treatment of NLRP3-mediated inflammatory diseases: Latest evidence and therapeutic outcomes[J]. Int Immunopharmacol, 2022, 106: 108595. https://www.sciencedirect.com/science/article/pii/S1567576922000790

    [36]

    Tapia-Abellán A, Angosto-Bazarra D, Martínez-Banaclocha H, et al. Addendum: MCC950 closes the active conformation of NLRP3 to an inactive state[J]. Nat Chem Biol, 2021, 17(3): 361.

    [37]

    Wang M, Zhao M, Yu J, et al. MCC950, a Selective NLRP3 Inhibitor, Attenuates Adverse Cardiac Remodeling Following Heart Failure Through Improving the Cardiometabolic Dysfunction in Obese Mice[J]. Front Cardiovasc Med, 2022, 9: 727474. https://pubmed.ncbi.nlm.nih.gov/35647084/

    [38]

    Zhao M, Zhang J, Xu Y, et al. Selective Inhibition of NLRP3 inflammasome reverses pressure overload-induced pathological cardiac remodeling by attenuating hypertrophy, fibrosis, and inflammation[J]. Int Immunopharmacol, 2021, 99: 108046.

    [39]

    El-Sharkawy LY, Brough D, Freeman S. Inhibiting the NLRP3 inflammasome[J]. Molecules, 2020, 25(23): 5533. https://pubmed.ncbi.nlm.nih.gov/33255820/

    [40]

    Aliaga J, Bonaventura A, Mezzaroma E, et al. Preservation of Contractile Reserve and Diastolic Function by Inhibiting the NLRP3 Inflammasome with OLT1177(Dapansutrile) in a Mouse Model of Severe Ischemic Cardiomyopathy Due to Non-Reperfused Anterior Wall Myocardial Infarction[J]. Moleculars, 2021 Jun 9;26(12): 3534.

    [41]

    Wohlford GF, Van Tassell BW, Billingsley HE, et al. Phase 1B, randomized, double-blinded, dose escalation, single-center, repeat dose safety and pharmacodynamics study of the oral NLRP3 inhibitor dapansutrile in subjects with NYHA Ⅱ-Ⅲ systolic heart failure[J]. J Cardiovasc Pharma, 2021, 77(1): 49.

    [42]

    Imazio M, Nidorf M. Colchicine and the heart[J]. Eur Heart J, 2021, 42(28): 2745-2760.

    [43]

    Li Y, Zhang Y, Lu J, et al. Anti-inflammatory mechanisms and research progress of colchicine in atherosclerotic therapy[J]. J Cell Mol Med, 2021, 25(17): 8087-8094.

    [44]

    Bouabdallaoui N, Tardif JC, Waters DD, et al. Time-to-treatment initiation of colchicine and cardiovascular outcomes after myocardial infarction in the Colchicine Cardiovascular Outcomes Trial(COLCOT)[J]. Eur Heart J, 2020, 41(42): 4092-4099.

    [45]

    Shen S, Duan J, Hu J, et al. Colchicine alleviates inflammation and improves diastolic dysfunction in heart failure rats with preserved ejection fraction[J]. Eur J Pharmacol, 2022, 929: 175126.

    [46]

    Everett BM, MacFadyen JG, Thuren T, et al. Inhibition of Interleukin-1β and Reduction in Atherothrombotic Cardiovascular Events in the CANTOS Trial[J]. J Am Coll Cardiol, 2020, 76(14): 1660-1670.

    [47]

    Del Buono MG, Damonte JI, Chiabrando JG, et al. Effect of IL-1 blockade with anakinra on heart failure outcomes in patients with anterior versus nonanterior ST elevation myocardial infarction[J]. J Cardiovasc Pharmacol, 2022, 79(6): 774-780.

  • 加载中

(2)

计量
  • 文章访问数:  1691
  • PDF下载数:  374
  • 施引文献:  0
出版历程
收稿日期:  2022-08-29
刊出日期:  2023-08-13

目录