基于NLRP3抑制剂的冠状动脉粥样硬化治疗研究进展

韩国栋, 陈建淑, 陶婷, 等. 基于NLRP3抑制剂的冠状动脉粥样硬化治疗研究进展[J]. 临床心血管病杂志, 2024, 40(12): 1016-1022. doi: 10.13201/j.issn.1001-1439.2024.12.013
引用本文: 韩国栋, 陈建淑, 陶婷, 等. 基于NLRP3抑制剂的冠状动脉粥样硬化治疗研究进展[J]. 临床心血管病杂志, 2024, 40(12): 1016-1022. doi: 10.13201/j.issn.1001-1439.2024.12.013
HAN Guodong, CHEN Jianshu, TAO Ting, et al. Progress of NLRP3 inhibitor in treatment of coronary atherosclerosis[J]. J Clin Cardiol, 2024, 40(12): 1016-1022. doi: 10.13201/j.issn.1001-1439.2024.12.013
Citation: HAN Guodong, CHEN Jianshu, TAO Ting, et al. Progress of NLRP3 inhibitor in treatment of coronary atherosclerosis[J]. J Clin Cardiol, 2024, 40(12): 1016-1022. doi: 10.13201/j.issn.1001-1439.2024.12.013

基于NLRP3抑制剂的冠状动脉粥样硬化治疗研究进展

  • 基金项目:
    甘肃省中医药研究中心年度专项(No: zyzx-2023-21); “萃英科技创新”计划(No: CY2021-MS-B14)
详细信息

Progress of NLRP3 inhibitor in treatment of coronary atherosclerosis

More Information
  • 靶向NLRP3作为多种疾病的治疗策略取得了显著的进展,NLRP3炎性小体在多种生理和病理过程中发挥作用。本文旨在阐述NLRP3炎性小体的激活,及NLRP3炎性小体抑制剂在动脉粥样硬化中的作用机制,以期为冠状动脉粥样硬化的治疗提供新的治疗思路,为患者带来更为有效的治疗策略。
  • 加载中
  • 图 1  NLRP3炎性小体激活过程

    Figure 1.  Activation process of NLRP3 inflammasome

    图 2  NLRP3炎性小体抑制剂治疗冠状动脉粥样硬化

    Figure 2.  NLRP3 inflammasome inhibitor in the treatment of coronary atherosclerosis

  • [1]

    Tsao CW, Aday AW, Almarzooq ZI, et al. Heart disease and stroke statistics-2022 update: a report from the American heart association[J]. Circulation, 2022, 145(8): e153-e639.

    [2]

    Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease[J]. N Engl J Med, 2017, 377(12): 1119-1131. doi: 10.1056/NEJMoa1707914

    [3]

    Liuzzo G, Patrono C. Low-dose colchicine: a new tool in the treatment of chronic coronary disease?Comment on the low-dose colchicine(LoDoCo)2trial[J]. Eur Heart J, 2020, 41(40): 3880-3881. doi: 10.1093/eurheartj/ehaa782

    [4]

    Bouabdallaoui N, Tardif JC, Waters DD, et al. Time-to-treatment initiation of colchicine and cardiovascular outcomes after myocardial infarction in the Colchicine Cardiovascular Outcomes Trial(COLCOT)[J]. Eur Heart J, 2020, 41(42): 4092-4099. doi: 10.1093/eurheartj/ehaa659

    [5]

    Stark K, Massberg S. Interplay between inflammation and thrombosis in cardiovascular pathology[J]. Nat Rev Cardiol, 2021, 18: 666-682. doi: 10.1038/s41569-021-00552-1

    [6]

    Hansen SEJ, Madsen CM, Varbo A, et al. Low-grade inflammation in the association between mild-to-moderate hypertriglyceridemia and risk of acute pancreatitis: a study of more than 115000 individuals from the general population[J]. Clin Chem, 2019, 65(2): 321-332. doi: 10.1373/clinchem.2018.294926

    [7]

    Xiao L, Harrison DG. Inflammation in hypertension[J]. Can J Cardiol, 2020, 36(5): 635-647. doi: 10.1016/j.cjca.2020.01.013

    [8]

    Cederstrom S, Johansson F, Samnegard A, et al. Inflammatory biomarkers and long-term outcome in young stable patients 3 months after a first myocardial infarction[J]. Eur Heart J, 2023, 44(Supplement_2): ehad655.1421. doi: 10.1093/eurheartj/ehad655.1421

    [9]

    Pei Y, Chengyi X, Dan S. Research progress of heart injury repair after acute myocardial infarction[J]. J Clin Cardiol, 2023, 39: 558-562.

    [10]

    Jiang X, Wang F, Wang J, et al. P1942A trait of inflammation pathogenesis in human atherosclerosis: inflammasome driven interleukin-1 signaling in complex atherosclerotic plaques via hyperlipidemia trained innate immunity[J]. Eur Heart J, 2019, 40(Supplement_1): ehz748.0689. doi: 10.1093/eurheartj/ehz748.0689

    [11]

    Xu L, Dai Y, Qian J, et al. Dapagliflozin decreases atherosclerotic plaque instability via regulating macrophage pyroptosis[J]. Eur Heart J, 2023, 44(Supplement_2): ehad655.3255. doi: 10.1093/eurheartj/ehad655.3255

    [12]

    Pereira AC, de Pascale J, Resende R, et al. ER-mitochondria communication is involved in NLRP3 inflammasome activation under stress conditions in the innate immune system[J]. Cell Mol Life Sci, 2022, 79(4): 213. doi: 10.1007/s00018-022-04211-7

    [13]

    Onat UI, Yildirim AD, Tufanli Ö, et al. Intercepting the lipid-induced integrated stress response reduces atherosclerosis[J]. J Am Coll Cardiol, 2019, 73(10): 1149-1169. doi: 10.1016/j.jacc.2018.12.055

    [14]

    Ran L, Ye T, Erbs E, et al. KCNN4 links PIEZO-dependent mechanotransduction to NLRP3 inflammasome activation[J]. Sci Immunol, 2023, 8(90): eadf4699. doi: 10.1126/sciimmunol.adf4699

    [15]

    Choi EH, Park SJ. TXNIP: a key protein in the cellular stress response pathway and a potential therapeutic target[J]. Exp Mol Med, 2023, 55: 1348-1356. doi: 10.1038/s12276-023-01019-8

    [16]

    Bredeck G, Busch M, Rossi A, et al. Inhalable Saharan dust induces oxidative stress, NLRP3 inflammasome activation, and inflammatory cytokine release[J]. Environ Int, 2023, 172: 107732. doi: 10.1016/j.envint.2023.107732

    [17]

    Park YJ, Dodantenna N, Kim Y, et al. MARCH5-dependent NLRP3 ubiquitination is required for mitochondrial NLRP3-NEK7 complex formation and NLRP3 inflammasome activation[J]. EMBO J, 2023, 42(19): e113481. doi: 10.15252/embj.2023113481

    [18]

    Bittner ZA, Liu X, Mateo Tortola M, et al. BTK operates a phospho-tyrosine switch to regulate NLRP3 inflammasome activity[J]. J Exp Med, 2021, 218(11): e20201656. doi: 10.1084/jem.20201656

    [19]

    Li L, Cui YJ, Liu Y, et al. ATP6AP2 knockdown in cardiomyocyte deteriorates heart function via compromising autophagic flux and NLRP3 inflammasome activation[J]. Cell Death Discov, 2022, 8: 161. doi: 10.1038/s41420-022-00967-w

    [20]

    An JQ, Ouyang L, Yu CJ, et al. Nicotine exacerbates atherosclerosis and plaque instability via NLRP3 inflammasome activation in vascular smooth muscle cells[J]. Theranostics, 2023, 13(9): 2825-2842. doi: 10.7150/thno.81388

    [21]

    Mao S, Chen P, Pan W, et al. Exacerbated post-infarct pathological myocardial remodelling in diabetes is associated with impaired autophagy and aggravated NLRP3 inflammasome activation[J]. ESC Heart Fail, 2022, 9(1): 303-317. doi: 10.1002/ehf2.13754

    [22]

    Di Q, Zhao X, Tang H, et al. USP22 suppresses the NLRP3 inflammasome by degrading NLRP3 via ATG5-dependent autophagy[J]. Autophagy, 2023, 19(3): 873-885. doi: 10.1080/15548627.2022.2107314

    [23]

    Cai B, Zhao J, Zhang Y, et al. USP5 attenuates NLRP3 inflammasome activation by promoting autophagic degradation of NLRP3[J]. Autophagy, 2022, 18(5): 990-1004. doi: 10.1080/15548627.2021.1965426

    [24]

    Paik S, Kim JK, Silwal P, et al. An update on the regulatory mechanisms of NLRP3 inflammasome activation[J]. Cell Mol Immunol, 2021, 18: 1141-1160. doi: 10.1038/s41423-021-00670-3

    [25]

    Dagvadorj J, Mikulska-Ruminska K, Tumurkhuu G, et al. Recruitment of pro-IL-1α to mitochondrial cardiolipin, via shared LC3 binding domain, inhibits mitophagy and drives maximal NLRP3 activation[J]. Proc Natl Acad Sci USA, 2021, 118(1): e2015632118. doi: 10.1073/pnas.2015632118

    [26]

    Moretti J, Jia BS, Hutchins Z, et al. Caspase-11 interaction with NLRP3 potentiates the noncanonical activation of the NLRP3 inflammasome[J]. Nat Immunol, 2022, 23: 705-717. doi: 10.1038/s41590-022-01192-4

    [27]

    Westerterp M, Fotakis P, Ouimet M, et al. Cholesterol efflux pathways suppress inflammasome activation, NETosis, and atherogenesis[J]. Circulation, 2018, 138(9): 898-912. doi: 10.1161/CIRCULATIONAHA.117.032636

    [28]

    Abbate A, Toldo S, Marchetti C, et al. Interleukin-1 and the inflammasome as therapeutic targets in cardiovascular disease[J]. Circ Res, 2020, 126(9): 1260-1280. doi: 10.1161/CIRCRESAHA.120.315937

    [29]

    Nakajima A, Araki M, Kurihara O, et al. Predictors for rapid progression of coronary calcification: an optical coherence tomography(OCT)study[J]. Eur Heart J, 2020, 41(Supplement_2): ehaa946.0316. doi: 10.1093/ehjci/ehaa946.0316

    [30]

    Vogel S, Murthy P, Cui XD, et al. Abstract 369: muscle ischemia induces Nlrp3 inflammasome activation in platelets via Tlr4, promoting platelet aggregation and interfering with perfusion recovery[J]. Arterioscler Thromb Vasc Biol, 2018, 38(Suppl_1): A369-A369.

    [31]

    Chen XY, Li JK, Liu P, et al. Inflammasome-independent mechanism of NLRP3 is critical for platelet GPIb-Ⅸ function and thrombosis[J]. Thromb Haemost, 2024: 110.

    [32]

    Liu J, Jin YX, Wang B, et al. Dopamine D1 receptor alleviates doxorubicin-induced cardiac injury by inhibiting NLRP3 inflammasome[J]. Biochem Biophys Res Commun, 2021, 561: 7-13. doi: 10.1016/j.bbrc.2021.04.098

    [33]

    Huang Y, Jiang H, Chen Y, et al. Tranilast directly targets NLRP3 to treat inflammasome-driven diseases[J]. EMBO Mol Med, 2018, 10(4): e8689. doi: 10.15252/emmm.201708689

    [34]

    Lamkanfi M, Dixit VM. A new lead to NLRP3 inhibition[J]. J Exp Med, 2017, 214(11): 3147-3149. doi: 10.1084/jem.20171848

    [35]

    Jin XY, Liu DD, Zhou XR, et al. Entrectinib inhibits NLRP3 inflammasome and inflammatory diseases by directly targeting NEK7[J]. Cell Rep Med, 2023, 4(12): 101310. doi: 10.1016/j.xcrm.2023.101310

    [36]

    Ridker PM, Rane M. Interleukin-6 signaling and anti-interleukin-6 therapeutics in cardiovascular disease[J]. Circ Res, 2021, 128(11): 1728-1746. doi: 10.1161/CIRCRESAHA.121.319077

    [37]

    Ridker PM, Devalaraja M, Baeres FMM, et al. IL-6 inhibition with ziltivekimab in patients at high atherosclerotic risk(RESCUE): a double-blind, randomised, placebo-controlled, phase 2 trial[J]. Lancet, 2021, 397(10289): 2060-2069. doi: 10.1016/S0140-6736(21)00520-1

    [38]

    Ma Q. Pharmacological inhibition of the NLRP3 inflammasome: structure, molecular activation, and inhibitor-NLRP3 interaction[J]. Pharmacol Rev, 2023, 75(3): 487-520. doi: 10.1124/pharmrev.122.000629

    [39]

    van der Heijden T, Kritikou E, Venema W, et al. NLRP3 inflammasome inhibition by MCC950 reduces atherosclerotic lesion development in apolipoprotein E-deficient mice-brief report[J]. Arterioscler Thromb Vasc Biol, 2017, 37(8): 1457-1461. doi: 10.1161/ATVBAHA.117.309575

    [40]

    van Hout GPJ, Bosch L, Ellenbroek GHJM, et al. The selective NLRP3-inflammasome inhibitor MCC950 reduces infarct size and preserves cardiac function in a pig model of myocardial infarction[J]. Eur Heart J, 2017, 38(11): 828-836.

    [41]

    Samuel M, Tardif JC, Bouabdallaoui N, et al. Colchicine for secondary prevention of cardiovascular disease: a systematic review and meta-analysis of randomized controlled trials[J]. Can J Cardiol, 2021, 37(5): 776-785. doi: 10.1016/j.cjca.2020.10.006

    [42]

    Kearns AC, Liu F, Dai S, et al. Caspase-1 activation is related with HIV-associated atherosclerosis in an HIV transgenic mouse model and HIV patient cohort[J]. Arterioscler Thromb Vasc Biol, 2019, 39(9): 1762-1775. doi: 10.1161/ATVBAHA.119.312603

    [43]

    Wu JS, Lan YJ, Shi XK, et al. Sennoside A is a novel inhibitor targeting caspase-1[J]. Food Funct, 2022, 13(19): 9782-9795. doi: 10.1039/D2FO01730J

    [44]

    Wu JS, Luo Y, Jiang Q, et al. Coptisine from Coptis chinensis blocks NLRP3 inflammasome activation by inhibiting caspase-1[J]. Pharmacol Res, 2019, 147: 104348. doi: 10.1016/j.phrs.2019.104348

    [45]

    Su XL, Wang SH, Komal S, et al. The caspase-1 inhibitor VX765 upregulates connexin 43 expression and improves cell-cell communication after myocardial infarction via suppressingthe IL-1β/p38 MAPK pathway[J]. Acta Pharmacol Sin, 2022, 43: 2289-2301. doi: 10.1038/s41401-021-00845-8

    [46]

    He HB, Jiang H, Chen Y, et al. Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity[J]. Nat Commun, 2018, 9(1): 2550. doi: 10.1038/s41467-018-04947-6

  • 加载中

(2)

计量
  • 文章访问数:  616
  • PDF下载数:  126
  • 施引文献:  0
出版历程
收稿日期:  2024-04-22
刊出日期:  2024-12-13

目录