-
摘要: 靶向NLRP3作为多种疾病的治疗策略取得了显著的进展,NLRP3炎性小体在多种生理和病理过程中发挥作用。本文旨在阐述NLRP3炎性小体的激活,及NLRP3炎性小体抑制剂在动脉粥样硬化中的作用机制,以期为冠状动脉粥样硬化的治疗提供新的治疗思路,为患者带来更为有效的治疗策略。Abstract: Targeting NLRP3 is a therapeutic strategy in various diseases, and NLRP3 inflammasome plays an improtant role in various physiological and pathological processes. This article elucidates the activation of NLRP3 inflammasome and the mechanism of NLRP3 inflammasome inhibitor in atherosclerosis, in order to provide new treatment of coronary atherosclerosiss.
-
Key words:
- atherosclerosis /
- inflammation /
- NLRP3 inflammasome /
- treatment
-
-
[1] Tsao CW, Aday AW, Almarzooq ZI, et al. Heart disease and stroke statistics-2022 update: a report from the American heart association[J]. Circulation, 2022, 145(8): e153-e639.
[2] Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease[J]. N Engl J Med, 2017, 377(12): 1119-1131. doi: 10.1056/NEJMoa1707914
[3] Liuzzo G, Patrono C. Low-dose colchicine: a new tool in the treatment of chronic coronary disease?Comment on the low-dose colchicine(LoDoCo)2trial[J]. Eur Heart J, 2020, 41(40): 3880-3881. doi: 10.1093/eurheartj/ehaa782
[4] Bouabdallaoui N, Tardif JC, Waters DD, et al. Time-to-treatment initiation of colchicine and cardiovascular outcomes after myocardial infarction in the Colchicine Cardiovascular Outcomes Trial(COLCOT)[J]. Eur Heart J, 2020, 41(42): 4092-4099. doi: 10.1093/eurheartj/ehaa659
[5] Stark K, Massberg S. Interplay between inflammation and thrombosis in cardiovascular pathology[J]. Nat Rev Cardiol, 2021, 18: 666-682. doi: 10.1038/s41569-021-00552-1
[6] Hansen SEJ, Madsen CM, Varbo A, et al. Low-grade inflammation in the association between mild-to-moderate hypertriglyceridemia and risk of acute pancreatitis: a study of more than 115000 individuals from the general population[J]. Clin Chem, 2019, 65(2): 321-332. doi: 10.1373/clinchem.2018.294926
[7] Xiao L, Harrison DG. Inflammation in hypertension[J]. Can J Cardiol, 2020, 36(5): 635-647. doi: 10.1016/j.cjca.2020.01.013
[8] Cederstrom S, Johansson F, Samnegard A, et al. Inflammatory biomarkers and long-term outcome in young stable patients 3 months after a first myocardial infarction[J]. Eur Heart J, 2023, 44(Supplement_2): ehad655.1421. doi: 10.1093/eurheartj/ehad655.1421
[9] Pei Y, Chengyi X, Dan S. Research progress of heart injury repair after acute myocardial infarction[J]. J Clin Cardiol, 2023, 39: 558-562.
[10] Jiang X, Wang F, Wang J, et al. P1942A trait of inflammation pathogenesis in human atherosclerosis: inflammasome driven interleukin-1 signaling in complex atherosclerotic plaques via hyperlipidemia trained innate immunity[J]. Eur Heart J, 2019, 40(Supplement_1): ehz748.0689. doi: 10.1093/eurheartj/ehz748.0689
[11] Xu L, Dai Y, Qian J, et al. Dapagliflozin decreases atherosclerotic plaque instability via regulating macrophage pyroptosis[J]. Eur Heart J, 2023, 44(Supplement_2): ehad655.3255. doi: 10.1093/eurheartj/ehad655.3255
[12] Pereira AC, de Pascale J, Resende R, et al. ER-mitochondria communication is involved in NLRP3 inflammasome activation under stress conditions in the innate immune system[J]. Cell Mol Life Sci, 2022, 79(4): 213. doi: 10.1007/s00018-022-04211-7
[13] Onat UI, Yildirim AD, Tufanli Ö, et al. Intercepting the lipid-induced integrated stress response reduces atherosclerosis[J]. J Am Coll Cardiol, 2019, 73(10): 1149-1169. doi: 10.1016/j.jacc.2018.12.055
[14] Ran L, Ye T, Erbs E, et al. KCNN4 links PIEZO-dependent mechanotransduction to NLRP3 inflammasome activation[J]. Sci Immunol, 2023, 8(90): eadf4699. doi: 10.1126/sciimmunol.adf4699
[15] Choi EH, Park SJ. TXNIP: a key protein in the cellular stress response pathway and a potential therapeutic target[J]. Exp Mol Med, 2023, 55: 1348-1356. doi: 10.1038/s12276-023-01019-8
[16] Bredeck G, Busch M, Rossi A, et al. Inhalable Saharan dust induces oxidative stress, NLRP3 inflammasome activation, and inflammatory cytokine release[J]. Environ Int, 2023, 172: 107732. doi: 10.1016/j.envint.2023.107732
[17] Park YJ, Dodantenna N, Kim Y, et al. MARCH5-dependent NLRP3 ubiquitination is required for mitochondrial NLRP3-NEK7 complex formation and NLRP3 inflammasome activation[J]. EMBO J, 2023, 42(19): e113481. doi: 10.15252/embj.2023113481
[18] Bittner ZA, Liu X, Mateo Tortola M, et al. BTK operates a phospho-tyrosine switch to regulate NLRP3 inflammasome activity[J]. J Exp Med, 2021, 218(11): e20201656. doi: 10.1084/jem.20201656
[19] Li L, Cui YJ, Liu Y, et al. ATP6AP2 knockdown in cardiomyocyte deteriorates heart function via compromising autophagic flux and NLRP3 inflammasome activation[J]. Cell Death Discov, 2022, 8: 161. doi: 10.1038/s41420-022-00967-w
[20] An JQ, Ouyang L, Yu CJ, et al. Nicotine exacerbates atherosclerosis and plaque instability via NLRP3 inflammasome activation in vascular smooth muscle cells[J]. Theranostics, 2023, 13(9): 2825-2842. doi: 10.7150/thno.81388
[21] Mao S, Chen P, Pan W, et al. Exacerbated post-infarct pathological myocardial remodelling in diabetes is associated with impaired autophagy and aggravated NLRP3 inflammasome activation[J]. ESC Heart Fail, 2022, 9(1): 303-317. doi: 10.1002/ehf2.13754
[22] Di Q, Zhao X, Tang H, et al. USP22 suppresses the NLRP3 inflammasome by degrading NLRP3 via ATG5-dependent autophagy[J]. Autophagy, 2023, 19(3): 873-885. doi: 10.1080/15548627.2022.2107314
[23] Cai B, Zhao J, Zhang Y, et al. USP5 attenuates NLRP3 inflammasome activation by promoting autophagic degradation of NLRP3[J]. Autophagy, 2022, 18(5): 990-1004. doi: 10.1080/15548627.2021.1965426
[24] Paik S, Kim JK, Silwal P, et al. An update on the regulatory mechanisms of NLRP3 inflammasome activation[J]. Cell Mol Immunol, 2021, 18: 1141-1160. doi: 10.1038/s41423-021-00670-3
[25] Dagvadorj J, Mikulska-Ruminska K, Tumurkhuu G, et al. Recruitment of pro-IL-1α to mitochondrial cardiolipin, via shared LC3 binding domain, inhibits mitophagy and drives maximal NLRP3 activation[J]. Proc Natl Acad Sci USA, 2021, 118(1): e2015632118. doi: 10.1073/pnas.2015632118
[26] Moretti J, Jia BS, Hutchins Z, et al. Caspase-11 interaction with NLRP3 potentiates the noncanonical activation of the NLRP3 inflammasome[J]. Nat Immunol, 2022, 23: 705-717. doi: 10.1038/s41590-022-01192-4
[27] Westerterp M, Fotakis P, Ouimet M, et al. Cholesterol efflux pathways suppress inflammasome activation, NETosis, and atherogenesis[J]. Circulation, 2018, 138(9): 898-912. doi: 10.1161/CIRCULATIONAHA.117.032636
[28] Abbate A, Toldo S, Marchetti C, et al. Interleukin-1 and the inflammasome as therapeutic targets in cardiovascular disease[J]. Circ Res, 2020, 126(9): 1260-1280. doi: 10.1161/CIRCRESAHA.120.315937
[29] Nakajima A, Araki M, Kurihara O, et al. Predictors for rapid progression of coronary calcification: an optical coherence tomography(OCT)study[J]. Eur Heart J, 2020, 41(Supplement_2): ehaa946.0316. doi: 10.1093/ehjci/ehaa946.0316
[30] Vogel S, Murthy P, Cui XD, et al. Abstract 369: muscle ischemia induces Nlrp3 inflammasome activation in platelets via Tlr4, promoting platelet aggregation and interfering with perfusion recovery[J]. Arterioscler Thromb Vasc Biol, 2018, 38(Suppl_1): A369-A369.
[31] Chen XY, Li JK, Liu P, et al. Inflammasome-independent mechanism of NLRP3 is critical for platelet GPIb-Ⅸ function and thrombosis[J]. Thromb Haemost, 2024: 110.
[32] Liu J, Jin YX, Wang B, et al. Dopamine D1 receptor alleviates doxorubicin-induced cardiac injury by inhibiting NLRP3 inflammasome[J]. Biochem Biophys Res Commun, 2021, 561: 7-13. doi: 10.1016/j.bbrc.2021.04.098
[33] Huang Y, Jiang H, Chen Y, et al. Tranilast directly targets NLRP3 to treat inflammasome-driven diseases[J]. EMBO Mol Med, 2018, 10(4): e8689. doi: 10.15252/emmm.201708689
[34] Lamkanfi M, Dixit VM. A new lead to NLRP3 inhibition[J]. J Exp Med, 2017, 214(11): 3147-3149. doi: 10.1084/jem.20171848
[35] Jin XY, Liu DD, Zhou XR, et al. Entrectinib inhibits NLRP3 inflammasome and inflammatory diseases by directly targeting NEK7[J]. Cell Rep Med, 2023, 4(12): 101310. doi: 10.1016/j.xcrm.2023.101310
[36] Ridker PM, Rane M. Interleukin-6 signaling and anti-interleukin-6 therapeutics in cardiovascular disease[J]. Circ Res, 2021, 128(11): 1728-1746. doi: 10.1161/CIRCRESAHA.121.319077
[37] Ridker PM, Devalaraja M, Baeres FMM, et al. IL-6 inhibition with ziltivekimab in patients at high atherosclerotic risk(RESCUE): a double-blind, randomised, placebo-controlled, phase 2 trial[J]. Lancet, 2021, 397(10289): 2060-2069. doi: 10.1016/S0140-6736(21)00520-1
[38] Ma Q. Pharmacological inhibition of the NLRP3 inflammasome: structure, molecular activation, and inhibitor-NLRP3 interaction[J]. Pharmacol Rev, 2023, 75(3): 487-520. doi: 10.1124/pharmrev.122.000629
[39] van der Heijden T, Kritikou E, Venema W, et al. NLRP3 inflammasome inhibition by MCC950 reduces atherosclerotic lesion development in apolipoprotein E-deficient mice-brief report[J]. Arterioscler Thromb Vasc Biol, 2017, 37(8): 1457-1461. doi: 10.1161/ATVBAHA.117.309575
[40] van Hout GPJ, Bosch L, Ellenbroek GHJM, et al. The selective NLRP3-inflammasome inhibitor MCC950 reduces infarct size and preserves cardiac function in a pig model of myocardial infarction[J]. Eur Heart J, 2017, 38(11): 828-836.
[41] Samuel M, Tardif JC, Bouabdallaoui N, et al. Colchicine for secondary prevention of cardiovascular disease: a systematic review and meta-analysis of randomized controlled trials[J]. Can J Cardiol, 2021, 37(5): 776-785. doi: 10.1016/j.cjca.2020.10.006
[42] Kearns AC, Liu F, Dai S, et al. Caspase-1 activation is related with HIV-associated atherosclerosis in an HIV transgenic mouse model and HIV patient cohort[J]. Arterioscler Thromb Vasc Biol, 2019, 39(9): 1762-1775. doi: 10.1161/ATVBAHA.119.312603
[43] Wu JS, Lan YJ, Shi XK, et al. Sennoside A is a novel inhibitor targeting caspase-1[J]. Food Funct, 2022, 13(19): 9782-9795. doi: 10.1039/D2FO01730J
[44] Wu JS, Luo Y, Jiang Q, et al. Coptisine from Coptis chinensis blocks NLRP3 inflammasome activation by inhibiting caspase-1[J]. Pharmacol Res, 2019, 147: 104348. doi: 10.1016/j.phrs.2019.104348
[45] Su XL, Wang SH, Komal S, et al. The caspase-1 inhibitor VX765 upregulates connexin 43 expression and improves cell-cell communication after myocardial infarction via suppressingthe IL-1β/p38 MAPK pathway[J]. Acta Pharmacol Sin, 2022, 43: 2289-2301. doi: 10.1038/s41401-021-00845-8
[46] He HB, Jiang H, Chen Y, et al. Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity[J]. Nat Commun, 2018, 9(1): 2550. doi: 10.1038/s41467-018-04947-6
-