Research progress of heat shock proteins in structural remodeling of atrial fibrillation
-
摘要: 心房颤动(atrial fibrillation,AF)是常见的心律失常,具有高致残率和致死率的特征,已成为世界性公共卫生问题,心房结构重构是AF发生发展的关键机制。热休克蛋白(heat shock protein,HSP)是一种分子伴侣蛋白,由一大家族蛋白组成,这些蛋白参与保护机体免受各种形式的细胞应激,它们的经典功能是通过结合部分未折叠的蛋白质来防止异常蛋白质聚集,研究显示,HSP通过抑制心房结构重构,可以预防AF发生并减缓AF的进展。近年来,HSP诱导化合物如替普瑞酮(geranylgeranylacetone,GGA)、L-谷氨酰胺等受到了广泛关注。在这篇综述中,我们概述了HSP在AF结构重构中的保护作用,并讨论了HSP诱导化合物作为AF的新兴治疗药物的研究进展,以期为AF的预防和治疗提供新思路。
-
关键词:
- 心房颤动 /
- 热休克蛋白 /
- 结构重构 /
- 热休克蛋白诱导化合物
Abstract: Atrial fibrillation(AF) is a common arrhythmia characterized by high morbidity and mortality, and has become a worldwide public health problem. Atrial structural remodeling is a key mechanism for the occurrence and development of AF. heat shock protein(HSP) is a molecular chaperone protein made up of a large family of proteins that are involved in protecting the body from various forms of cellular stress, and their classic function is to prevent toxic protein aggregation by binding partially folded proteins. HSP plays an important protective role in the occurrence and progression of AF. By preventing atrial remodeling, HSP can prevent the occurrence of AF and prevent the recurrence and progression of AF. In recent years, HSP-inducing compounds such as geranylgeranylacetone(GGA) and L-glutamine have received extensive attention. In this review, we discuss the protective role of HSP in the structural remodeling of AF, and outline the research progress of HSP-inducing compounds as emerging therapeutic agents for AF, with a view to providing new ideas for the prevention and treatment of AF. -
-
[1] Brundel B, Ai X, Hills MT, et al. Atrial fibrillation[J]. Nat Rev Dis Primers, 2022, 8(1): 21. doi: 10.1038/s41572-022-00347-9
[2] Kornej J, Börschel CS, Benjamin EJ, et al. Epidemiology of atrial fibrillation in the 21st century: novel methods and new insights[J]. Circ Res, 2020, 127(1): 4-20. doi: 10.1161/CIRCRESAHA.120.316340
[3] 中华医学会心血管病学分会, 中国生物医学工程学会心律分会. 心房颤动诊断和治疗中国指南[J]. 中华心血管病杂志, 2023, 40(6): 572-618. doi: 10.3760/cma.j.cn112148-20230416-00221
[4] 中华医学会心电生理和起搏分会, 中国医师协会心律学专业委员会, 中国房颤中心联盟心房颤动防治专家工作委员会. 心房颤动: 目前的认识和治疗建议(2021)[J]. 中华心律失常学杂志, 2022, 26(1): 15-88.
[5] Tzeis S, Gerstenfeld EP, Kalman J, et al. 2024 European Heart Rhythm Association/Heart Rhythm Society/Asia Pacific Heart Rhythm Society/Latin American Heart Rhythm Society expert consensus statement on catheter and surgical ablation of atrial fibrillation[J]. J Interv Card Electrophysiol, 2024, 67(5): 921-1072. doi: 10.1007/s10840-024-01771-5
[6] Li N, Brundel BJJM. Inflammasomes and proteostasis novel molecular mechanisms associated with atrial fibrillation[J]. Circ Res, 2020, 127(1): 73-90. doi: 10.1161/CIRCRESAHA.119.316364
[7] 王添乐, 杨晓, 王剑. 蛋白质稳态在病理性心脏重塑中的作用[J]. 中华心血管病杂志, 2021, 38(7): 719-723.
[8] Hagymasi AT, Dempsey JP, Srivastava PK. Heat-Shock Proteins[J]. Current Protocols, 2022, 2(11): e592. doi: 10.1002/cpz1.592
[9] Barna J, Csermely P, Vellai T. Roles of heat shock factor 1 beyond the heat shock response[J]. Cell Mol Life Sci, 2018, 75(16): 2897-2916. doi: 10.1007/s00018-018-2836-6
[10] 易茜, 马瑞彦. 心房结构重构在心房颤动的发生及维持中的作用[J]. 中国循环杂志, 2015, 30(8): 813-816.
[11] Tubeeckx MRL, De Keulenaer GW, Heidbuchel H, et al. Pathophysiology and clinical relevance of atrial myopathy[J]. Basic Res Cardiol, 2024, 119(2): 215-242. doi: 10.1007/s00395-024-01038-0
[12] Everett TH 4th, Li H, Mangrum JM, et al. Electrical, morphological, and ultrastructural remodeling and reverse remodeling in a canine model of chronic atrial fibrillation[J]. Circulation, 2000, 102(12): 1454-1460. doi: 10.1161/01.CIR.102.12.1454
[13] 杨敏, 肖模超. 心房颤动患者左心房形态结构及功能与血栓形成关系的研究进展[J]. 临床心血管病杂志, 2023, 39(2): 103-107. https://lcxxg.whuhzzs.com/article/doi/10.13201/j.issn.1001-1439.2023.02.006
[14] Guerra J, Matta L, Bartelt A. Cardiac proteostasis in obesity and cardiovascular disease[J]. Herz, 2024, 49(2): 118-123. doi: 10.1007/s00059-024-05233-6
[15] Sandeep B, Ding WH, Huang X, et al. Mechanism and prevention of atrial remodeling and their related genes in cardiovascular disorders[J]. Curr Probl Cardiol, 2023, 48(1): 101414. doi: 10.1016/j.cpcardiol.2022.101414
[16] Meijering RA, Wiersma M, van Marion DM, et al. RhoA activation sensitizes cells to proteotoxic stimuli by abrogating the HSF1-dependent heat shock response[J]. PLoS One, 2015, 10(7): e0133553. doi: 10.1371/journal.pone.0133553
[17] Mandal K, Torsney E, Poloniecki J, et al. Association of high intracellular, but not serum, heat shock protein 70 with postoperative atrial fibrillation[J]. Ann Thorac Surg, 2005, 79(3): 865-871;discussion 871. doi: 10.1016/j.athoracsur.2004.08.018
[18] Oc M, Ucar HI, Pinar A, et al. Heat shock protein 60 antibody. A new marker for subsequent atrial fibrillation development[J]. Saudi Med J, 2007, 28(6): 844-847.
[19] Sakabe M, Shiroshita-Takeshita A, Maguy A, et al. Effects of a heat shock protein inducer on the atrial fibrillation substrate caused by acute atrial ischaemia[J]. Cardiovasc Res, 2008, 78(1): 63-70. doi: 10.1093/cvr/cvn019
[20] Wakisaka O, Takahashi N, Shinohara T, et al. Hyperthermia treatment prevents angiotensin Ⅱ-mediated atrial fibrosis and fibrillation via induction of heat-shock protein 72[J]. J Mol Cell Cardiol, 2007, 43(5): 616-626. doi: 10.1016/j.yjmcc.2007.08.005
[21] Brundel BJ, Henning RH, Ke L, et al. Heat shock protein upregulation protects against pacing-induced myolysis in HL-1 atrial myocytes and in human atrial fibrillation[J]. J Mol Cell Cardiol, 2006, 41(3): 555-562. doi: 10.1016/j.yjmcc.2006.06.068
[22] Brundel BJ, Shiroshita-Takeshita A, Qi XY, et al. Induction of heat shock response protects the heart against atrial fibrillation[J]. Circ Res, 2006, 99(12): 1394-1402. doi: 10.1161/01.RES.0000252323.83137.fe
[23] Zhang DL, Ke L, Mackovicova K, et al. Effects of different small HSPB members on contractile dysfunction and structural changes in a Drosophila melanogaster model for Atrial Fibrillation[J]. J Mol Cell Cardiol, 2011, 51(3): 381-389. doi: 10.1016/j.yjmcc.2011.06.008
[24] Ke L, Meijering RA, Hoogstra-Berends F, et al. HSPB1, HSPB6, HSPB7 and HSPB8 protect against RhoA GTPase-induced remodeling in tachypaced atrial myocytes[J]. PLoS One, 2011, 6(6): e20395. doi: 10.1371/journal.pone.0020395
[25] Proietti R, Giordani AS, Lorenzo CA. ROCK(RhoA/rho kinase)activation in atrial fibrillation: molecular pathways and clinical implications[J]. Curr Cardiol Rev, 2023, 19(3): e171122210986. doi: 10.2174/1573403X19666221117092951
[26] Zhang DL, Hu X, Henning RH, et al. Keeping up the balance: role of HDACs in cardiac proteostasis and therapeutic implications for atrial fibrillation[J]. Cardiovasc Res, 2016, 109(4): 519-526. doi: 10.1093/cvr/cvv265
[27] Kishore P, Collinet ACT, Brundel BJJM. Prevention of atrial fibrillation: putting proteostasis derailment back on track[J]. J Clin Med, 2023, 12(13): 4352. doi: 10.3390/jcm12134352
[28] Cai A, Li L, Zhou Y. Pathophysiological effects of RhoA and Rho-associated kinase on cardiovascular system[J]. J Hypertens, 2016, 34(1): 3-10. doi: 10.1097/HJH.0000000000000768
[29] Muranova LK, Shatov VM, Gusev NB. Role of small heat shock proteins in the remodeling of actin microfilaments[J]. Biochem Mosc, 2022, 87(8): 800-811. doi: 10.1134/S0006297922080119
[30] Henning RH, Brundel BJJM. Proteostasis in cardiac health and disease[J]. Nat Rev Cardiol, 2017, 14: 637-653. doi: 10.1038/nrcardio.2017.89
[31] Zhang DL, Wu CT, Qi XY, et al. Activation of histone deacetylase-6 induces contractile dysfunction through derailment of α-tubulin proteostasis in experimental and human atrial fibrillation[J]. Circulation, 2014, 129(3): 346-358. doi: 10.1161/CIRCULATIONAHA.113.005300
[32] Boyault C, Sadoul K, Pabion M, et al. HDAC6, at the crossroads between cytoskeleton and cell signaling by acetylation and ubiquitination[J]. Oncogene, 2007, 26(37): 5468-5476. doi: 10.1038/sj.onc.1210614
[33] Sawa Y, Matsushita N, Sato S, et al. Chronic HDAC6 activation induces atrial fibrillation through atrial electrical and structural remodeling in transgenic mice[J]. Int Heart J, 2021, 62(3): 616-626. doi: 10.1536/ihj.20-703
[34] Hu X, Li J, van Marion DMS, et al. Heat shock protein inducer GGA*-59 reverses contractile and structural remodeling via restoration of the microtubule network in experimental Atrial Fibrillation[J]. J Mol Cell Cardiol, 2019, 134: 86-97. doi: 10.1016/j.yjmcc.2019.07.006
[35] Wiersma M, Meijering RAM, Qi XY, et al. Endoplasmic reticulum stress is associated with autophagy and cardiomyocyte remodeling in experimental and human atrial fibrillation[J]. J Am Heart Assoc, 2017, 6(10): e006458. doi: 10.1161/JAHA.117.006458
[36] 揭起强, 林明杰, 吴林. 自噬在心房颤动发生与进展中的作用及机制[J]. 中华心血管病杂志, 2023, 51(2): 198-202.
[37] Sirish P, Diloretto DA, Thai PN, et al. The critical roles of proteostasis and endoplasmic reticulum stress in atrial fibrillation[J]. Front Physiol, 2021, 12: 793171.
[38] van Marion DM, Hu X, Zhang DL, et al. Screening of novel HSP-inducing compounds to conserve cardiomyocyte function in experimental atrial fibrillation[J]. Drug Des Devel Ther, 2019, 13: 345-364. doi: 10.2147/DDDT.S176924
[39] Zhou C, Bai J, Jiang C, et al. Geranylgeranylacetone attenuates myocardium ischemic/reperfusion injury through HSP70 and Akt/GSK-3β/ENOS pathway[J]. Am J Transl Res, 2017, 9(2): 386-395.
[40] Durante W. The emerging role of l-glutamine in cardiovascular health and disease[J]. Nutrients, 2019, 11(9): E2092. doi: 10.3390/nu11092092
[41] Morrison AL, Dinges M, Singleton KD, et al. Glutamine's protection against cellular injury is dependent on heat shock factor-1[J]. Am J Physiol Cell Physiol, 2006, 290(6): C1625-C1632. doi: 10.1152/ajpcell.00635.2005
[42] Starreveld R, Ramos KS, Muskens AJQM, et al. Daily supplementation of L-glutamine in atrial fibrillation patients: the effect on heat shock proteins and metabolites[J]. Cells, 2020, 9(7): E1729. doi: 10.3390/cells9071729
[43] 曾圣强, 吴延庆. 热休克蛋白诱导剂替普瑞酮的心肌保护作用[J]. 中华心血管病杂志, 2016, 44(12): 1059-1063.
-
计量
- 文章访问数: 510
- PDF下载数: 58
- 施引文献: 0